
TROPICAL LINEAR SYSTEMS AND THE TROPICAL
JACOBIAN

JANKO BÖHM

Abstract. These are the notes for a series of talks on tropical linear
systems, and the tropical Abel-Jacobi theorem. They give examples and
details on results from [1] and [2].

1. Tropical linear systems

1.1. Introduction. Given a divisor D on a compact Riemann surface C of
genus g = h0

(
Ω1

)
= h0 (K), we ask to determine the dimension h0 (D) of

H0 (C,OC (D)), that is, the number of independent meromorphic functions
f on C with

(f) + D ≥ 0
The Riemann-Roch theorem tells us

Theorem 1.1.

h0 (D) = deg (D)− g (C) + 1 + h0 (K −D)

Remark 1.2. The Riemann-Roch theorem gives a picture of the behaviour
of the dimension of a generic linear system of an effective divisor

h0 (D) =
{

1 for deg (D) ≤ g (C)
deg (D)− g (C) + 1 for deg (D) > g (C)

A divisor with h0 (K −D) 6= 0 is called special.

Remark 1.3. To illustrate the usefulness of the Riemann-Roch theorem, we
recall how it implies some basic facts on curves:

If g (C) ≥ 2 then the complete linear system |K| has no base points: If
p ∈ C would be in the base locus of |K|, then

h0 (K − p) = h0 (K) = g (C)

Hence the Riemann-Roch theorem tells us, that

h0 (p) = deg (p)− g (C) + 1 + h0 (K − p)

= 1− g (C) + 1 + g (C)
= 2

Hence there is a non-constant meromorphic function on C, which is holomor-
phic on C−{p} and has a single pole at p. Hence S would be biholomorphic
to P1, which has genus 0.

1
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So K gives a morphism

ιK : C → Pg(C)−1

p 7→ (ω1 (p) : ... : ωg (p))

where ω1, ..., ωg are a basis of H0
(
C, Ω1

)
.

This map is injective, if for all points p, q ∈ C there is an ω ∈ H0
(
C, Ω1

)
with

ω (p) = 0, ω (q) 6= 0

and it is an immersion, if for all p ∈ C there is an ω ∈ H0
(
C, Ω1

)
such that

ω vanishes to order exactly 1 at p.
Hence ιK is an embedding iff for all p, q

h0 (K − p− q) < h0 (K − p)︸ ︷︷ ︸
g(C)−1

On the other hand, by the Riemann-Roch theorem, the left hand side is

h0 (K − p− q) = g (C)− 3 + h0 (p + q)

hence
h0 (K − p− q) < h0 (K − p) ⇔ h0 (p + q) = 1

Hence ιK fails to be an embedding, iff there is a meromorphic function
on C that has only two poles, that is, iff C is a two-sheeted covering of P1.
Such a Riemann surface is called hyperelliptic.

1.2. Tropical curves.

Definition 1.4. For us, a graph Γ is a (finite) set V (Γ) of vertices and a
set E (Γ) of edges which are unordered pairs of elements of V (Γ), i.e., we
allow edges connecting a vertex to itself.

The valence val (P ) of a vertex P is the number of edges P is contained
in.

A metric graph, is a graph together with a length function

l : E (Γ) → R>0

Consider intervals Ie = [0, l (e)] ⊂ R for e ∈ E (Γ) and glue Ie1 and Ie2

at end points, if e1 ∩ e2 6= ∅ give a topological space, called the geometric
realization |Γ| of Γ.

The first betti number of Γ is called the genus g (Γ). It holds

g (Γ) = |E (Γ)| − |V (Γ)|+ #connected components

For us, a tropical curve is a connected metric graph Γ with val (P ) ≥ 2
for all P ∈ V (Γ).

Two curves are called equivalent, if they represent the same metric space.

Example 1.5. Tropical curves of g (C) = 0
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genus g (C) = 1

(which are equivalent) and g (C) = 2

Remark 1.6. We could also allow 1-valent vertices. Then we can consider

l : E (Γ) → R>0 ∪ {∞}
and have unbounded edges with a vertex at infinity and the edge is identified
with [0,∞].

Remark 1.7. If these abstract tropical curves are embedded into a tropical
toric variety

T (TV (Σ)) =
HomR

(
RΣ(1),R

)

HomR (An−1 (TV (Σ))⊗ R,R)

(of dimension n), we add (counted with multiplicity) degree many unbounded
edges corresponding to rays Σ (1).

1.3. Divisors.

Definition 1.8. A divisor on a tropical curve C is an element of the free
abelian group Div C generated by the points of |C|, that is,

D =
∑

iaiPi

with ai ∈ Z and Pi ∈ |C|.
The degree of D is

deg D =
∑

iai

The divisor D is called effective if ai ≥ 0 for all i.
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1.4. Rational functions.

Definition 1.9. A rational function on an open subset U ⊂ |C| is a
continuous piecewise linear function

f : U → R
(with a finite number of pieces) with integer slopes.

Denote by M (U) the set of rational functions on U .

If we allow for unbounded edges, then f may take values ±∞ at the
unbounded edges.

Example 1.10. A rational function on |C| is given (up to a constant) by
specifying slopes:

The slope may also change in the interior of edges

1.5. Principal divisors.

Definition 1.11. Denote by ti the coordinate on C given by an outward
primitive tangent vectors at a point P ∈ |C|.

Given a rational function f : U → R we define the order of f at P as

ordP (f) =
∑

i

∂f

∂ti
(P )
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that is, the sum of all outgoing slopes.
A rational function f : U → R is called regular, if ordp (f) ≥ 0 for all

p ∈ U .

Definition 1.12. Then the principal divisor of f : |C| → R is

(f) =
∑

P∈|C| ordP (f) P

Example 1.13. The principal divisor of a rational function

Proposition 1.14. The degree of a principal divisor of a rational function
f : |C| → R is

deg (f) = 0

Proof. As

ordP (f) =
∑

i

∂f

∂ti
(P )

each slope appears in

deg (f) =
∑

P∈|C| ordP (f)

twice (inward and outward) with opposite sign. ¤
Corollary 1.15. There is no non-constant regular function on |C|.
1.6. Canonical divisors.

Definition 1.16. The canonical divisor of C is

KC =
∑

P∈V (C) (val (P )− 2) P

Note, that if a curve degenerates into C0 =
⋃

iCi then in the tropical
curve ∑

j, j 6=iCi · Cj = val (Ci)
hence by C0.Ci = 0 ∀i we have

Ci.Ci = − val (Ci)

By adjunction formula

KC .Ci = −Ci.Ci − 2 = val (Ci)− 2
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Example 1.17. Canonical divisors, genus g (C) = 0

− 2

genus g (C) = 1

and g (C) = 2

Remark 1.18. What is a meromorphic 1-form, the divisor of a meromorphic
1-form, and why is it a canonical divisor?

1.7. Linear systems.

Definition 1.19. For a divisor D on C define the space of global sections
of D

L (D) = {f ∈M (C) | D + (f) ≥ 0}
and the corresponding complete linear system

|D| = {D + (f) | f ∈ L (D)}
of divisors linearly equivalent to D (that is differing from D by a principal
divisor).

The dimension of the linear system is defined as

dim |D| = max {k | L (D − P1 − ...− Pk) 6= 0 ∀P1, ..., Pk ∈ |C|}
and dim |D| = −1 if L (D) = 0.

The space L (D) depends only on the metric space represented by C.
Global rescaling of the metric structure of C and simultaneously of D does
not change dim |D|.
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Remark 1.20. As deg (f) = 0, all divisors in the linear system have the same
degree

deg (D + (f)) = deg (D)

If deg (D) < 0 then for all f we have deg (D + (f)) = deg (D) < 0 hence
D + (f) � 0, so

deg (D) < 0 ⇒ dim |D| = −1

Otherwise

dim |D| ≤ deg (D)

Example 1.21. Consider the canonical divisor KC = Q1 + Q2 of the curve
C

Suppose that

KC + (f) = P1 + P2

We can achieve any two points on the middle edge via the rational function
with slopes

hence the set of all divisors linear equivalent to KC is parametrized by

(P1, P2) ∈ [0, a]2

We will show later that P1 and P2 cannot lie on the two different cycles.
Suppose P1 and P2 lie on the cycle containing Q1 then the continuity of the
f implies that P1 and P2 have the same distance from Q1. So we consider
the rational function
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As P1 + P2 = P2 + P1 we obtain |D| as the S2-quotient of

that is

Example 1.22. We now compute the dimension of the linear system in the
previous Example 1.21:

For any P1 ∈ C there is an f with

(f) + KC = P1 + P2

Then
(f) + KC − P1 = P2 ≥ 0

hence
f ∈ L (KC − P1)

that is, dim |KC | ≥ 1.
On the other hand there are P1, P2, for example

such that for all f

(f) + KC 6= P1 + P2

As (f) + KC − P1 − P2 6= 0 but

deg ((f) + KC − P1 − P2) = 0
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we have
(f) + KC − P1 − P2 � 0

So we conclude
dim |KC | = 1

Example 1.23. If we consider the following divisor Q1 + Q2 on the curve
C from Example 1.21

we will see later that

(f) + Q1 + Q2 = P1 + P2

with Pi on the same loop as Qi, hence, by continuity, f has to be constant,
that is,

L (Q1 + Q2) = R

and
dim |Q1 + Q2| = 0

Proposition 1.24. Let D be a divisor on C. Then L (D) has the structure
of a tropical semimodule, over the tropical semiring

T = (R,⊕,¯)

with

a⊕ b = max (a, b)
a¯ b = a + b

that is, L (D) is subset of

T|C| = {|C| → T}
which is closed under pointwise ⊕

L (D)× L (D) → L (D)

f ⊕ g = (P 7→ f (P )⊕ g (P ) = max {f (P ) , g (P )})
and scalar multiplication

T× L (D) → L (D)

λ¯ f = (P 7→ λ¯ f (P ))
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Proof. Suppose f, g ∈ L (D) and λ ∈ T. Then for the principal divisor of f
it holds

(λ¯ f) = (λ + f) = (f)
that is

λ¯ f ∈ L (D)
If f (P ) > g (P ) then

ordP (f ⊕ g) = ordP (f)
If f (P ) = g (P ) then

∂

∂ti
(f ⊕ g) = max

{
∂f

∂ti
,
∂g

∂ti

}

So in any case

ordP (f ⊕ g) ≥ max {ordP (f) , ordP (g)}
hence

ordP (f ⊕ g) + D (P ) > 0 ∀P ∈ |C|
(with the coefficient D (P ) of P in D), that is,

f ⊕ g ∈ L (D)

¤

We already used the following lemma to calculate the dimension of the
linear system in the above example:

Lemma 1.25. Let D be a divisor of integer points on C, that is, of integer
distance from the vertices, let

D + (f) = P1 + ... + Pn

(with Pi not necessarily distinct) and Pi a non-integer point of |C| on a cycle
C ′ of C. Then there is a second non-integer point Pj 6= Pi with Pj ∈ C ′.

Proof. We identify the cycle with the interval [0, l (C ′)]. Suppose there is
only one non-integer point Pi on C ′. If f has a multiple zero, the claim is
obvious.

Now assume that f has a single zero. Let x ∈ Z∩ [0, l (C ′)] with

Pi ∈ [x− 1, x]

By adding a constant to f we can assume that

f (0) , ..., f (x− 1) ∈ Z
As f has integer slopes and |Pi − x| /∈ Z and ordP (f) = 1

f (x) , ..., f
(
l
(
C ′)) /∈ Z

a contradiction to
f (0) = f

(
l
(
C ′))

by continuity. ¤
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1.8. Integer curves. Suppose C is a tropical curve with

l : E (C) → Z>1

Introducing 2-valent vertices, we can assume that all edges have length one,
for example

Remark 1.26. If

(f) =
∑

iaiPi

is a divisor of integer points of C then the function f is determined by linear
interpolation of the values of f at the vertices. The principal divisor of f
can be described by the formula

(f) =
∑

(P,Q)∈E(C)

(f (P )− f (Q)) (P −Q)

(note that the terms are independent of the ordering of the tuple (P, Q)).

We can use this formula to compute the discrete linear system

L̃ (D) = {f ∈M (C) | D + (f) ≥ 0, D + (f) integer divisor}
|̃D| =

{
D + (f) | f ∈ L̃ (D)

}

and its dimension

r̃ (D) = max
{

k | ∀P1, ..., Pk ∈ V (C)∃f : V (C) → Z with
D + (f)− P1 − ...− Pk ≥ 0

}

Example 1.27. Starting with
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we can achieve all the following configurations

using appropriate integer functions (as constructed already above). These
configurations form |̃KC |.

Using this we observe that for all P ∈ V (C) there is an f : V (C) → Z
with (f) + D − P ≥ 0. On the other hand there are configurations of two
points, which cannot be achieved. We conclude again

r̃ (KC) = 1

The formula for (f) represents chip-firing: Given a subgraph with a
divisor of degree di on a boundary point Pi of external valency ri, we can si-
multaneously move one point along each edge emanating from the subgraph
at Pi provided di ≥ ri ∀i.
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Example 1.28. We use chip-firing to relate the linear equivalent divisors
of the previous Example 1.27 (shading the subgraph):

1.9. Riemann-Roch theorem. We now prove the theorem of Riemann-
Roch using the corresponding result of Baker and Norine in the case of
non-metric graphs.

Theorem 1.29. For an integer divisor D on an integer tropical curve C,
we have

r̃ (D)− r̃ (KC −D) = deg (D) + 1− g (C)

We want to show from this:

Theorem 1.30. For a divisor D on a tropical curve C, we have

dim |D| − dim |KC −D| = deg (D) + 1− g (C)

First of all, we approximate by a curve C with

l : E (C) → Q>0

and a rational divisor. Rescaling the curve we may assume

l : E (C) → Z>1

and D integer. Rescaling further we get

r̃ (D) = dim |D|
r̃ (KC −D) = dim |KC −D|

by Lemma 1.32, which follows from the following Lemma 1.31 :
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Lemma 1.31. Let D be integer on integer C. If there is an f with (f)+D ≥
0, then there is an f such that

(f) + D ≥ 0

and (f) + D is integer.

Proof. We prove the claim by induction on the degree m = deg D. For
m < 0 nothing is to show. Write

(f) + D = P1 + ... + Pm

If m = 0 then (f) + D = 0 is integer.
If m > 0 then

(f) + D − P1 = P2 + ... + Pm ≥ 0
hence

L (D − Pi) 6= 0
If some Pi is integer, then by the induction hypothesis

L̃ (D − Pi) 6= 0

and hence L̃ (D) 6= 0.
Suppose all Pi are not integer: We may assume that Pm has among all Pi

the minimal distance from an integer vertex P of C. Consider the function

h : |C| → R

Q 7→
{ −min {‖Pm − P‖ , ‖Q− Pi‖ | i} if Q is in the conn. comp. of P

0 otherwise

Example:

Then

f + h ∈ L (D − P )

⇔ (f + h)︸ ︷︷ ︸
(f)+(h)

+ D − P ≥ 0

⇔ (h) + P1 + ... + Pm − P ≥ 0
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Assume this divisor has a summand which is a negative multiple of Q.
First of all, Q 6= P as ordP (h) ≥ 1.
Hence h has a pole at Q, so Q = Pi for some i, so ordQ (h) = −2.
This is only possible if Q is in the interior of the connected component of P .
So the connected component contains a cycle and Q is the only point of
(f) + D on the cycle.
This gives a contradiction to Lemma 1.25.
By the induction hypothesis

L̃ (D − P ) 6= 0

and hence L̃ (D) 6= 0. ¤
Lemma 1.32. Let D be integer on an integer C. Then there is an N ≥ 1
such that on any multiple of N · C it holds

dim |D| = r̃ (D)

Proof. Let m = dim |D|+ 1. For all P1, ..., Pm−1

L (D − P1 − ...− Pm−1) 6= 0

hence by the previous Lemma 1.31

L̃ (D − P1 − ...− Pm−1) 6= 0

so by definition
r̃ (D) ≥ m− 1 = dim |D|

For the other inequality:
If dim |D|+ 1 > deg (D) (that is, dim |D| = deg (D)) then

r̃ (D) ≤ deg (D) ≤ dim |D|
If m = dim |D|+ 1 ≤ deg (D) = n consider the map

πm : {(f, P1, ..., Pn) | D + (f) = P1 + ... + Pn} → Cn → Cm

(f, P1, ..., Pn) 7→ (P1, ..., Pn) 7→ (P1, ..., Pm)

As image (πm) ⊂ Cm is closed, and strictly smaller (as m > dim |D|), there
is a

(P1, ..., Pm) /∈ image (πm)
with rational coordinates. Rescale by

N = lcm (denom (dist (Pi, C ∩ Z)) | i)
By construction

L (D − P1 − ...− Pm) = 0
hence also

L̃ (D − P1 − ...− Pm) = 0
so

r̃ (D) ≤ m− 1 = dim |D|
¤
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Example 1.33. For D = KC we obtain

dim |KC | = deg (KC) + 1− g (C)

=
∑

P∈V (C)

(valP (C)− 2) + 1− g (C)

= 2 |E (C)| − 2 |V (C)|+ 1− g (C)

= 2g (C)− 2 + 1− g (C)

= g (C)− 1

as
g (C) = |E (C)| − |V (C)|+ 1

and ∑

P∈V (C)

valP (C) = 2 |E (C)|

So we recover in Example 1.21

dim |KC | = 2 + 1− 2 = 1

2. The tropical Jacobian

2.1. Tropical abelian varieties.

Definition 2.1. Consider Rg with the lattice Zg. A tropical torus is a
quotient Rg/Λ by a lattice Λ ⊂ Rg.

A polarized tropical abelian variety is a tropical torus together with
a homomorphism

Λ → (Zg)∗

such that the corresponding bilinear map

Rg × Rg → R

is positive definite symmetric.
It is called principally polarized if Λ → (Zg)∗ is an isomorphism.

2.2. Holomorphic 1-Forms.

Definition 2.2. The tangent space TpC of C at p is the set of derivations
∂

∂ti
of C at p corresponding to the tangent directions ti of C at p. A holo-

morphic differential form on C is a collection of maps

ωp : TpC → R

such that
∑

iωp

(
∂

∂ti

)
= 0

for all p.
Denote by Ω1 (C) the set of all holomorphic 1-forms, and by Ω1

Z (C) the
space of forms taking integer values.
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Example 2.3. A global holomorphic 1-form on a curve of genus 2 specifying
the value of the form on tangent vectors.

Note that this is not a rational function. It is a flow on the curve, the value
of the form on the tangent vector is the volume of the flow per unit of time.

Definition 2.4. Let C be a curve of genus g. A set of break points of
C is a set of points P1, ..., Pg ∈ |C| of valency 2 together with a choice of
an outward primitive integer tangent vector ∂

∂ti
at ti for all i, such that

|C| \ {P1, ..., Pg} represents a connected tree.

A choice of break points is equivalent to the choice of a connected funda-
mental domain T ⊂ |C|.
Example 2.5. A choice of break points for the curve in Example 2.3

A choice of break points specifies an isomorphism of R-vector spaces

Φ : Ω1 (C) → Rg

ω 7→
(
ωP1

(
∂

∂x1

)
, ..., ωPg

(
∂

∂xg

))

and a basis of the lattice
Ω1
Z (C) ⊂ Ω1 (C)

(as in the definition of Φ (ω) we consider values on primitive integer tangent
vectors), that is, the standard basis of

Zg ⊂ Rg
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Example 2.6. For the choice of break points in Example 2.3 the bijection
is given by associating to the form

the tuple (x, y) ∈ R2.

2.3. The tropical Jacobian. For any path γ in C and ω ∈ Ω1 (C) we can
define the integral ∫

γ
ω ∈ R

by pulling back the tropical 1-form to a classical 1-form on the interval.

Example 2.7. We compute the integral of the form given in Example 2.3
(also specifying the metric structure on the curve) over the path γ

as ∫

γ
ω = 1 · 1 + 2 · 3 = 7

Let

Ω1 (C)∗ = HomR
(
Ω1 (C) ,R

) ⊃ Ω1
Z (C)∗ ∼= (Zg)∗
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be the space of R-valued linear functionals on Ω1 (C). We obtain a Z-
monomorphism from the cycles to Ω1 (C)∗

H1 (C,Z) ↪→ Ω1
Z (C)∗ ⊂ Ω1 (C)∗

γ 7→
∫

γ
=

(
ω 7→

∫

γ
ω

)

Definition 2.8. The Jacobian of the tropical curve C is

J (C) = Ω1 (C)∗ /H1 (C,Z)

By a choice of break points H1 (C,Z) corresponds to a lattice Λ ⊂ Rg ∼=
Ω1 (C)∗ of rank g, and

J (C) ∼= Rg/Λ

Example 2.9. Consider the curve (metric structure with lengths a, b, c)

with the depicted choice of break points (specifying Zg ⊂ Rg). Integrating
over the cycle γ1 we get

∫

γ1

Φ−1 (x, y) = b (x + y) + ax = (a + b, b) · (x, y)

that is ∫

γ1

= (a + b, b) ·

For γ2 similarly
∫

γ2

Φ−1 (x, y) = b (x + y) + cy = (b, b + c) · (x, y)

that is ∫

γ2

= (b, b + c) ·
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Hence the lattice Λ is generated by these two points

and J (C) is the quotient.

Consider the bilinear map

Q : Paths (C)× Paths (C) → R

defined by extending bilinearly the definition for any non-selfintersecting
paths γ

Q (γ, γ) = length (γ)

Example 2.10. Consider the paths γ1 + 2γ2 + γ3 and γ1 + γ2 on

Then
Q (γ1 + 2γ2 + γ3, γ1 + γ2) = a + 2b

The map Q induces a symmetric bilinear form

Q : H1 (C,Z)×H1 (C,Z) → R

(as any zero-homologous cycle is trivial).

Lemma 2.11. The induced bilinear map

Ω1 (C)∗ × Ω1 (C)∗ → R

is positive definite.
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Proof. For

γ =
∑

EaEE

we have

Q (γ, γ) =
∑

Ea2
E length (E)

¤

From Q we obtain a map

Q̃ : Ω1 (C)∗ → Ω1 (C)∗∗ ∼= Ω1 (C)∫
γ 7→

(∫
γ′ 7→ Q (γ, γ′)

)
(∫

γ′ 7→
∫
γ′ ω

)
7→ ω

which restricts to
Q̃ : Ω1

Z (C)∗ → Ω1
Z (C)

∼= ∼=
Λ Zg

Example 2.12. We compute the image Q̃ (γ1) ∈ Ω1
Z (C), that is, we find

an ω ∈ Ω1
Z (C) such that

(Q (γ1, γ1) , Q (γ1, γ2)) · = (a + b, b) · =
(∫

γ1

ω,

∫

γ2

ω

)
·

The form ω is given by taking flow 1 along the cycle γ1 and 0 otherwise:

In the same way, for a basis of Λ ∼= H1 (C,Z) such that any cycle in the
basis contains exactly one break point, the basis is mapped to the standard
basis of Zg, hence

Q̃ : Ω1
Z (C)∗ → Ω1

Z (C)

is an isomorphism, so:

Proposition 2.13. J (C) is a principally polarized tropical abelian variety.
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2.4. Tropical Abel-Jacobi theorem. Denote by Divd (C) the set of de-
gree d divisors and by Picd (C) its quotient by linear equivalence. Fix
P0 ∈ C. For

D =
∑

i

aiDi ∈ Divd (C)

define µ̃ (D) ∈ Ω1 (C)∗ by

µ̃ (D) : Ω1 (C) → R
ω 7→ ∑

i ai

∫ pi

p0
ω

by fixing paths from p0 to pi.
For a path in H1 (C,Z) we have µ̃ (D) ∈ Λ, hence we obtain a well defined

map

µ : Divd (C) −→ J (C) ∼= Rg/Λ
D 7→ µ̃ (D)

Remark: If d > 0 choice of P0 corresponds to the Jacobi inversion constant
κ in Theorem 2.19.

Example 2.14. We compute the image µ (C) of all points of C in the case
of Example 2.9. Consider the choice of break points and P0 as follows:

Recall that (x, y) ∈ R2 corresponds to a 1-form Φ−1 (x, y). Consider paths
γi of length l1, b + l2 and b + l3 as follows
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We obtain the integrals

∫

γ1

Φ−1 (x, y) = l1 (x + y) = (l1, l1) · (x, y)
∫

γ2

Φ−1 (x, y) = b (x + y) + l2x = (b + l2, b) · (x, y)
∫

γ3

Φ−1 (x, y) = b (x + y) + l3y = (b, b + l3) · (x, y)

hence

µ (P1) = (l1, l1) ·
µ (P2) = (b + l2, b) ·
µ (P3) = (b, b + l3) ·

and we obtain µ (C) as

Theorem 2.15 (Tropical Abel theorem). For any d the map µ factors
through Picd (C)

Divd (C) −→ Picd (C)
µ ↘ ↓ φ

J (C)

and φ is injective.

Example 2.16. We illustrate µ (D) = 0 for D = (f) with f ∈M (C) at an
example. The general case works the same way.
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Consider the curve

and the rational function f specified by

with divisor

D = (f) = 7Q− 8P + R = 7 (Q− P ) + (R− P )

In terms of the following paths

and choosing the base point P0 = P we have

µ (D) = 7
∫

γ3

+
∫

γ2

+Λ
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Using the cycles

γ1 + γ2 − γ3 = 0
γ3 − γ4 = 0

we get

µ (D) = 7
∫

γ3

+
∫

γ2

+Λ

= 4
∫

γ3

+3
∫

γ4

+
∫

γ2

+Λ

=
∫

γ1

+2
∫

γ2

+3
∫

γ3

+3
∫

γ4

+Λ

=:
∫

γ
+Λ

= Q
(
Q̃−1 (−) , γ

)
= 0

where
γ = γ1 + 2γ2 + 3γ3 + 3γ4

is the path associated to f .

We now give the general proof of the statement in Theorem 2.15 that µ
factors through Picd (C).

Proof. Let f ∈M (C) and

(f) = D =
∑

iPi −
∑

iQi

Define
path (f) =

∑

i

aiγi

where γi is a path of constant slope ai of f .
We claim

µ (D) =
∑

i

∫ Pi

Qi

+Λ =
∫

path(f)
+Λ

Choose break points Bi (different from the Pj , Qj) and a basis δ1, ..., δg

of H1 (C,Z) such that any δi contains exactly one Bi.
Denote by εi the unique paths from Qi to Pi avoiding all Bj . We have to

show that ∑

i

εi = path (f) modH1 (C,Z)

Consider the curve C ′ with C ′ = C\ {B1, ..., Bg}. We show that
∑

i

εi = path
(
f ′

)
= path (f) +

∑

j

∂f

∂tj
(Bj) δj
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for
f ′ = f +

∑

j

∂f

∂tj
(Bj) · tj ∈M

(
C ′)

The second equality is clear by construction of f ′.
For the first equality note that (f ′) = (f) ⊂ |C ′| as divisors on C ′ and C,

respectively. Furthermore f ′ is non-zero only on the εi.
Then

µ (D) =
∫

path(f)
+Λ = Q

(
Q̃−1 (−) , path (f)

)
= 0

The last expression is zero as in path (f) each path γi occurs with multiplicity
equal to the slope of f , hence paired with a cycle we sum up the differences
of function values of f along, hence get 0. ¤

To put it differently, we are integrating the exact form df over a cycle.

Example 2.17. For the other direction we consider a divisor D of deg D = 0
and with µ (D) = 0 and construct an f ∈M (C) with

(f) = D

Take, for example, D = P −Q on

As any 1-form is zero on the middle edge, we have
∫ Q
P = 0 hence µ (D) = 0.

Consider the base point P0 and paths α from P to Q and α (x) from P0

to x as follows

Then
f (x) = Q (α, α (x))

is a rational function with slopes
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and (f) = P −Q.
The function f is independent of the choice of α (x) as for any cycle δ

Q (α, δ) =
∫

α
Q̃ (δ) = µ (D)

(
Q̃ (δ)

)
= 0

by assumption (note that only for cycles Q̃ (δ) is defined).

Proof. Now assume

D =
∑

iPi −
∑

iQi ∈ Div0 (C)

and µ (D) = 0. We construct an f ∈M (C) with

D = (f)

Choose paths αi from Pi to Qi such that
∑

i

∫

αi

= 0

Then take
f (x) =

∑

i

Q (αi, α (x))

for a choice of a path α (x) from P0 to x. Again f is independent of the
choice of α (x) as for any cycle δ we have

∑

i

Q (αi, δ) =
∑

i

∫

αi

Q̃ (δ) = 0

¤

2.5. Theta functions. The tropical Laurent series

Θ (x) = max
λ∈Λ

{
Q (λ, x)− 1

2
Q (λ, λ)

}

in x ∈ Rg has a Λ-periodic corner locus as the value of Θ changes under
translation in Λ by a affine linear function in x:

Lemma 2.18. For any µ ∈ Λ we have

Θ (x + µ) = Θ (x) + Q (µ, x)− 1
2
Q (µ, µ)

Proof. Inside the maximum we have

Q (λ, x + µ)− 1
2
Q (λ, λ)

= Q (λ− µ, x) + Q (µ, x) + Q (λ, µ)− 1
2
Q (λ− µ, λ− µ)−Q (µ, x)− 1

2
Q (µ, λ)

= Q (λ− µ, x)− 1
2
Q (λ− µ, λ− µ) + Q (µ, x) +

1
2
Q (µ, µ)
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which implies

Θ (x + µ) = max
λ∈Λ

{
Q (λ, x + µ)− 1

2
Q (λ, λ)

}

= max
λ∈Λ

{
Q (λ− µ, x)− 1

2
Q (λ− µ, λ− µ)

}

+ Q (µ, x) +
1
2
Q (µ, µ)

= max
λ′∈Λ

{
Q

(
λ′, x

)− 1
2
Q

(
λ′, λ′

)}

+ Q (µ, x) +
1
2
Q (µ, µ)

¤
So we can associate to Θ a Λ-periodic tropical hypersurface tropΘ ⊂ Rg

and hence a well defined tropical hypersurface, i.e., divisor

trop Θ ⊂ Rg/Λ

2.6. Jacobi inversion. For λ ∈ Rg denote by Θλ (x) := Θ (x− λ) the
translated theta function and trop Θλ its divisor in J (C). Let Dλ = µ∗ tropΘλ

the pull back of tropΘλ to C via the Abel-Jacobi map µ : C → J (C). With-
out proof we state:

Theorem 2.19. For any λ ∈ J (C) the divisor Dλ is effective of degree g.
There is a universal κ ∈ J (C) such that

µ (Dλ) + κ = λ for all λ ∈ J (C)

Hence φ is bijective.
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