TROPICAL LINEAR SYSTEMS AND THE TROPICAL
JACOBIAN

JANKO BOHM

ABSTRACT. These are the notes for a series of talks on tropical linear
systems, and the tropical Abel-Jacobi theorem. They give examples and
details on results from [1] and [2].

1. TROPICAL LINEAR SYSTEMS
1.1. Introduction. Given a divisor D on a compact Riemann surface C' of
genus g = h" (') = h?(K), we ask to determine the dimension h° (D) of
H° (C,O¢ (D)), that is, the number of independent meromorphic functions

f on C with
(f)+D=0

The Riemann-Roch theorem tells us
Theorem 1.1.
K’ (D) = deg (D) — g (C) + 1+ h° (K — D)

Remark 1.2. The Riemann-Roch theorem gives a picture of the behaviour
of the dimension of a generic linear system of an effective divisor

oy { ! for deg (D) < g(C)

~ | deg(D)—g(C)+1 fordeg(D) > g(C)

A divisor with h® (K — D) # 0 is called special.
Remark 1.3. To illustrate the usefulness of the Riemann-Roch theorem, we
recall how it implies some basic facts on curves:

If g (C) > 2 then the complete linear system |K| has no base points: If
p € C would be in the base locus of | K|, then

h? (K —p)=h"(K)=g(C)
Hence the Riemann-Roch theorem tells us, that
h? (p) = deg (p) — g (C) + 1+ h’ (K — p)
=1-g(C)+1+4(C)
=2
Hence there is a non-constant meromorphic function on C, which is holomor-

phic on C'—{p} and has a single pole at p. Hence S would be biholomorphic

to P!, which has genus 0.
1
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So K gives a morphism
g € — PeO-1
p o= (wi(p):.. 1wy (p))
where w1, ...,w, are a basis of HO (C’, Ql).

This map is injective, if for all points p,q € C there is an w € H° (C, Ql)
with
w(p)=0,w(q) #0
and it is an immersion, if for all p € C there is an w € H° (C’, Ql) such that
w vanishes to order exactly 1 at p.
Hence 1 is an embedding iff for all p, ¢
h(K—p—q) < h’(K—p)
—_——
9(C)—1
On the other hand, by the Riemann-Roch theorem, the left hand side is
h(K—~p—q)=g(C)=3+h’(p+q)
hence
W (K—p—q)<h®(K-p) e (p+q =1
Hence tx fails to be an embedding, iff there is a meromorphic function

on C that has only two poles, that is, iff C is a two-sheeted covering of P!.
Such a Riemann surface is called hyperelliptic.

1.2. Tropical curves.

Definition 1.4. For us, a graph T is a (finite) set V (I") of vertices and a
set E (T') of edges which are unordered pairs of elements of V (T'), i.e., we
allow edges connecting a vertex to itself.
The valence val (P) of a vertex P is the number of edges P is contained
in.
A metric graph, is a graph together with a length function
[:E(') — Ry

Consider intervals I, = [0,1(e)] C R for e € E(I") and glue I, and I,
at end points, if e; N ey # () give a topological space, called the geometric
realization |I'| of T'.

The first betti number of I is called the genus g (I"). It holds

g(')=|E ()] — |V ()| + #connected components

For us, a tropical curve is a connected metric graph I' with val (P) > 2
for all P € V (I).
Two curves are called equivalent, if they represent the same metric space.

Example 1.5. Tropical curves of g (C) =0
[ )
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genus g (C) =1

(which are equivalent) and g (C) = 2

Remark 1.6. We could also allow 1-valent vertices. Then we can consider
lE(F)—)R>0U{OO}

and have unbounded edges with a vertex at infinity and the edge is identified

with [0, oo].

Remark 1.7. If these abstract tropical curves are embedded into a tropical

toric variety

B Homg (R*(), R)

~ Homg (A,_1 (TV (X)) ® R, R)

(of dimension n), we add (counted with multiplicity) degree many unbounded
edges corresponding to rays X (1).

T(TV (%))

1.3. Divisors.

Definition 1.8. A divisor on a tropical curve C' is an element of the free
abelian group Div C' generated by the points of |C], that is,
D=3 a;P
with a; € Z and P; € |C|.
The degree of D is
deg D =3 .a;
The divisor D is called effective if a; > 0 for all 7.
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1.4. Rational functions.

Definition 1.9. A rational function on an open subset U C |C] is a
continuous piecewise linear function
f:U—=R
(with a finite number of pieces) with integer slopes.
Denote by M (U) the set of rational functions on U.

If we allow for unbounded edges, then f may take values +oo at the
unbounded edges.

Example 1.10. A rational function on |C] is given (up to a constant) by
specifying slopes:

The slope may also change in the interior of edges

1

1.5. Principal divisors.

Definition 1.11. Denote by t; the coordinate on C given by an outward
primitive tangent vectors at a point P € |C/|.
Given a rational function f: U — R we define the order of f at P as

ordp () = 2,2

iaTi(P)
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that is, the sum of all outgoing slopes.
A rational function f : U — R is called regular, if ord, (f) > 0 for all
pelU.

Definition 1.12. Then the principal divisor of f : |C| — R is
(f) = ZPe\C\ ordp (f) P

Example 1.13. The principal divisor of a rational function

1

1

Proposition 1.14. The degree of a principal divisor of a rational function

f:ICl—=Ris
deg (f) =0
Proof. As 5
ordp () = 5 (P)

each slope appears in
deg (f) = X pejciordp (f)
twice (inward and outward) with opposite sign. O
Corollary 1.15. There is no non-constant regqular function on |C|.
1.6. Canonical divisors.
Definition 1.16. The canonical divisor of C' is
Ko =) pey(c) (val(P) =2) P

Note, that if a curve degenerates into Cp = J,C; then in the tropical
curve

>, j#iCi- Cj = val (CY)
hence by Cy.C; = 0 Vi we have

CZCZ = —val (CZ>
By adjunction formula
Kc.Ci = —C’ZC'Z —2=val (Cl) -2
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Example 1.17. Canonical divisors, genus g (C') =0
-2
genus g (C) =1

and g (C) =2

Remark 1.18. What is a meromorphic 1-form, the divisor of a meromorphic
1-form, and why is it a canonical divisor?

1.7. Linear systems.

Definition 1.19. For a divisor D on C' define the space of global sections
of D

LD)={feM(C)|D+(f) =0}
and the corresponding complete linear system
DI ={D+(f) | feL(D)}

of divisors linearly equivalent to D (that is differing from D by a principal
divisor).
The dimension of the linear system is defined as

dim |D| =max{k | L(D—- P, —...— P,) #0VP,,...,P, € |C|}
and dim |D| = —1if £L(D) = 0.

The space L (D) depends only on the metric space represented by C.
Global rescaling of the metric structure of C' and simultaneously of D does
not change dim |D)|.



TROPICAL LINEAR SYSTEMS AND THE TROPICAL JACOBIAN 7

Remark 1.20. As deg (f) = 0, all divisors in the linear system have the same
degree

deg (D + (f)) = deg (D)
If deg (D) < 0 then for all f we have deg (D + (f)) = deg (D) < 0 hence
D+ (f) 20, s0
deg (D) < 0=dim|D| = -1
Otherwise
dim |D| < deg (D)

Example 1.21. Consider the canonical divisor K¢ = Q1 4 Q2 of the curve
C

Suppose that

Ko+ (f) =P+ P,

We can achieve any two points on the middle edge via the rational function
with slopes

C_ 96 D

hence the set of all divisors linear equivalent to K¢ is parametrized by

(P1, Py) €[0,a)?

We will show later that P, and P> cannot lie on the two different cycles.
Suppose P; and P» lie on the cycle containing ()1 then the continuity of the
f implies that P; and P, have the same distance from J1. So we consider
the rational function

X

e

Q, Q

—
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As P + P, = P, + P; we obtain |D| as the Se-quotient of

(Q, Q)

(Q, Q)

that is

Example 1.22. We now compute the dimension of the linear system in the
previous Example 1.21:
For any Py € C there is an f with

(f)+Kec=P+ P

Then
(f)+Kc—Pi=P,>0
hence
feL(Ke—P)

that is, dim |K¢| > 1.
On the other hand there are P, P, for example

i R

such that for all f

(f)—i-Kc#Pl-‘r-Pg
As (f)+ Ko — PL — P, # 0 but

deg ((f)+ Kc— P —P,)=0
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we have
(f)+Kc—Pi—P#0
So we conclude
dim |K¢| =1

Example 1.23. If we consider the following divisor )1 4+ (2 on the curve
C from Example 1.21

i A
Q Q

we will see later that

)+ Q1 +Q=P + P

with P; on the same loop as @Q;, hence, by continuity, f has to be constant,
that is,

L(Q1+Q2)=R

and
dim [@Q1 + Q2| =0

Proposition 1.24. Let D be a divisor on C. Then L (D) has the structure
of a tropical semimodule, over the tropical semiring

T=(R,®,0)
with
a ®b=max(a,b)
aOb=a+0
that is, L (D) is subset of
T = {jc| - T}
which is closed under pointwise @
L(D)x L(D)— L(D)
fog=(P— f(P)®g(P)=max{f(P),g(P)})
and scalar multiplication
T x L(D) — L(D)
NG f=(Pm A0 f(P)
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Proof. Suppose f,g € L (D) and X\ € T. Then for the principal divisor of f
it holds

Ao f)=0K+71) =)

that is
NGO feLl(D)

If f(P) > g(P) then

ordp (f ® g) = ordp (f)
If f(P)=g(P) then

0 df Jg

%(f@g) :max{ﬁti’&fi}

So in any case

ordp (f ® g) = max{ordp (f),ordp (9)}
hence
ordp (f®g)+ D(P)>0VP e |C|
(with the coefficient D (P) of P in D), that is,
f@geL(D)
O

We already used the following lemma to calculate the dimension of the
linear system in the above example:

Lemma 1.25. Let D be a divisor of integer points on C, that is, of integer
distance from the vertices, let

D+(f)=P +..+P,

(with P; not necessarily distinct) and P; a non-integer point of |C| on a cycle
C" of C. Then there is a second non-integer point P; # P; with P; € C'.

Proof. We identify the cycle with the interval [0,1(C")]. Suppose there is
only one non-integer point P; on C’. If f has a multiple zero, the claim is
obvious.

Now assume that f has a single zero. Let « € ZN 0,1 (C")] with

-P'i € [ZC - 17 IL’]

By adding a constant to f we can assume that

f(O),,f(fL’—l) €Z
As f has integer slopes and |P; — x| ¢ Z and ordp (f) =1

(@), T (1(C) ¢ 2
a contradiction to

F(0) =1 ((¢))

by continuity. O
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1.8. Integer curves. Suppose C is a tropical curve with
[ FE (C) - Z>1

Introducing 2-valent vertices, we can assume that all edges have length one,
for example

2

Remark 1.26. If
(f) = ZiaiP i
is a divisor of integer points of C' then the function f is determined by linear

interpolation of the values of f at the vertices. The principal divisor of f
can be described by the formula

H= D P -f@)(P-Q

(P.QIEE(C)
(note that the terms are independent of the ordering of the tuple (P, Q)).

We can use this formula to compute the discrete linear system

LD)={feM(Q)|D+(f) >0, D+ (f) integer divisor}
DI ={D+ ()| f e L(D)}

and its dimension

RS U AR O

Example 1.27. Starting with
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we can achieve all the following configurations

—_—

configurations form |K¢|.
Using this we observe that for all P € V (C) thereis an f: V (C) — Z

with (f) + D — P > 0. On the other hand there are configurations of two
points, which cannot be achieved. We conclude again

using appropriate integer functions (as constructed already above). These

F(Ke) =1

The formula for (f) represents chip-firing: Given a subgraph with a
divisor of degree d; on a boundary point P; of external valency r;, we can si-

multaneously move one point along each edge emanating from the subgraph
at P; provided d; > r; Vi.
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Example 1.28. We use chip-firing to relate the linear equivalent divisors
of the previous Example 1.27 (shading the subgraph):

000

1.9. Riemann-Roch theorem. We now prove the theorem of Riemann-
Roch using the corresponding result of Baker and Norine in the case of
non-metric graphs.

Theorem 1.29. For an integer divisor D on an integer tropical curve C,
we have

7 (D) =7 (K¢ — D) =deg (D) +1—-g(C)
We want to show from this:
Theorem 1.30. For a divisor D on a tropical curve C, we have
dim |D| —dim |Kg — D| =deg(D)+1—g(C)
First of all, we approximate by a curve C with
1 E(C) — Q0
and a rational divisor. Rescaling the curve we may assume
l:E(C)— Zs1
and D integer. Rescaling further we get

7 (D) = dim |D|
7 (K¢ — D) = dim |[K¢ — D)

by Lemma 1.32, which follows from the following Lemma 1.31 :
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Lemma 1.31. Let D be integer on integer C. If there is an f with (f)+D >
0, then there is an f such that
(f)+D>0
and (f) + D is integer.

Proof. We prove the claim by induction on the degree m = degD. For
m < 0 nothing is to show. Write

()+D=P + ..+ Py
If m =0 then (f) + D = 0 is integer.

If m > 0 then
hence
L(D-P)#0
If some P; is integer, then by the induction hypothesis
L(D—-P)#0

and hence £ (D) # 0.
Suppose all P; are not integer: We may assume that P,, has among all P;
the minimal distance from an integer vertex P of C. Consider the function

h:|C|—-R

0 —min{||P, — P||,||@ — Pl | i} if @ is in the conn. comp. of P
0 otherwise

Example:

R \
R
\

\<

Then
f+heLl(D-P)
< (f+h)+D—-P>0
N——
(H+h)
< (h+Pi+..+P,—P>0
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Assume this divisor has a summand which is a negative multiple of Q.
First of all, @ # P as ordp (h) > 1.

Hence h has a pole at @, so Q = P; for some 4, so ordg (h) = —2.

This is only possible if () is in the interior of the connected component of P.
So the connected component contains a cycle and @ is the only point of
(f) + D on the cycle.

This gives a contradiction to Lemma 1.25.

By the induction hypothesis

L(D—-P)#0
and hence £ (D) # 0. O

Lemma 1.32. Let D be integer on an integer C'. Then there is an N > 1
such that on any multiple of N - C' it holds

dim |D| =7 (D)
Proof. Let m = dim |D| + 1. For all P, ..., P—1
LD=P —..—Pp_1)#0
hence by the previous Lemma 1.31
LD—P —..—Pp_1)#0

so by definition
7(D) >m—1=dim|D|
For the other inequality:
If dim |D| 4 1 > deg (D) (that is, dim |D| = deg (D)) then
7 (D) < deg (D) < dim|D|
If m =dim|D|+ 1 < deg (D) = n consider the map
T ([, Py, Po) | D+ (f)=P1+..+ P} —-C"—=C™
(f,Pr,..., Pp) = (P1,..., Py) — (P1, ..., Pp)
As image (m,,) C C™ is closed, and strictly smaller (as m > dim |D|), there
is a
(P, ..., Py) ¢ image (m,,)
with rational coordinates. Rescale by
N = lem (denom (dist (P;, C N Z)) | i)
By construction
LD-P —..—Py)=0
hence also

L(D—P —..—P,)=0
SO

7(D) <m—1=dim|D|
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Example 1.33. For D = K¢ we obtain

dim [K¢| = deg (K¢) +1—g(C)

= Y Wl (@) -2 +1-9(C)
PeVv(C)
=2[E(C) =2[V(C)[+1-g4(C)
=29(C)—2+1—-¢(C)
=g(C) -1
g(C)=EO)] -V (O)]+1

and

> valp(C) =2|E(C)
PeV(C)
So we recover in Example 1.21

dim|Ko| =241-2=1

2. THE TROPICAL JACOBIAN
2.1. Tropical abelian varieties.

Definition 2.1. Consider RY with the lattice Z9. A tropical torus is a
quotient RY/A by a lattice A C RY.

A polarized tropical abelian variety is a tropical torus together with
a homomorphism

A — (Z9)"
such that the corresponding bilinear map
RI xR - R

is positive definite symmetric.

It is called principally polarized if A — (Z9)" is an isomorphism.

2.2. Holomorphic 1-Forms.

Definition 2.2. The tangent space T,C of C' at p is the set of derivations
aiti of C' at p corresponding to the tangent directions ¢; of C' at p. A holo-
morphic differential form on C is a collection of maps

wp: T,C — R

0
P <8u) =0
for all p.

Denote by Q! (C) the set of all holomorphic 1-forms, and by Q1 (C) the
space of forms taking integer values.

such that
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Example 2.3. A global holomorphic 1-form on a curve of genus 2 specifying
the value of the form on tangent vectors.

Note that this is not a rational function. It is a flow on the curve, the value
of the form on the tangent vector is the volume of the flow per unit of time.

Definition 2.4. Let C be a curve of genus g. A set of break points of
C is a set of points Py, ..., P, € |C| of valency 2 together with a choice of
an outward primitive integer tangent vector % at t; for all 4, such that
|CI\{P1,..., Py} represents a connected tree.

A choice of break points is equivalent to the choice of a connected funda-
mental domain T' C |C].

Example 2.5. A choice of break points for the curve in Example 2.3

A choice of break points specifies an isomorphism of R-vector spaces
o: QL) — RY

0 o)
w — <(.UP1 (87961) ,...,wpg <87xg)>

and a basis of the lattice

0z (C) c ' (0)
(as in the definition of ® (w) we consider values on primitive integer tangent
vectors), that is, the standard basis of

79 C RY
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Example 2.6. For the choice of break points in Example 2.3 the bijection
is given by associating to the form

X X Yy

X+y

LN

=X y _y

the tuple (z,y) € R2.

2.3. The tropical Jacobian. For any path v in C and w € Q! (C) we can
define the integral
/w eR
¥

by pulling back the tropical 1-form to a classical 1-form on the interval.

Example 2.7. We compute the integral of the form given in Example 2.3
(also specifying the metric structure on the curve) over the path ~

L

/w:1-1—|—2~3:7
Y

as

Let
Q' (C)* = Homg (' (O),R) D Qz (C)* = (29)*
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be the space of R-valued linear functionals on Q! (C'). We obtain a Z-
monomorphism from the cycles to Q! (C)*

H,(C,Z) — Q) (O)  c ol (O)F

¥ v
Definition 2.8. The Jacobian of the tropical curve C is
J(C)=Q"(C)" /Hi(C,Z)

By a choice of break points H; (C,Z) corresponds to a lattice A C RY =
Q! (C)* of rank g, and

J(C) = RI/A

Example 2.9. Consider the curve (metric structure with lengths a, b, ¢)

with the depicted choice of break points (specifying Z9 C RY). Integrating
over the cycle vy; we get

/ O (z,y) =b(z+y)+ax = (a+Db0b)-(2,y)

le(a+b,b)-

/ O (2,y) = bz +y) +ey=(bb+c)- ()
Y2

that is

For 5 similarly

that is

[m:(b,bJrc)-
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Hence the lattice A is generated by these two points
(a+2b,2b+c)

(b,b+c)
(a+b,b)

(0,0)
and J (C) is the quotient.
Consider the bilinear map
Q : Paths (C') x Paths (C') — R

defined by extending bilinearly the definition for any non-selfintersecting
paths y

Q (7,7) = length ()
Example 2.10. Consider the paths 1 + 279 + 3 and 1 + 72 on

Then
Q1 +2%2+73,7 +72) =a+2b

The map ) induces a symmetric bilinear form
Q:H (C,Z)x H (C,Z) - R
(as any zero-homologous cycle is trivial).
Lemma 2.11. The induced bilinear map
Aoy <ot ) —=R

is positive definite.
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Proof. For
7= Z ECLEE
we have

Q (v,7) = X_pak length (E)

From @) we obtain a map

Q: 'Oy — ()"
/. = (=)
Ly fyw) o w

IR
=)
S

which restricts to

o)
2
N—
a
l
2
N—
3

> R
N[

Example 2.12. We compute the image Q (71) € QL (C), that is, we find
an w € Q}, (C) such that

(Q(v1,7),Q (71,72)) - = (a+0b,0b)- :(/%w,/ww)

The form w is given by taking flow 1 along the cycle 1 and 0 otherwise:

a Y, b Y, C

In the same way, for a basis of A & Hy (C,Z) such that any cycle in the
basis contains exactly one break point, the basis is mapped to the standard
basis of Z9, hence

Q:0z(0) — 9z (C)
is an isomorphism, so:

Proposition 2.13. J (C) is a principally polarized tropical abelian variety.
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2.4. Tropical Abel-Jacobi theorem. Denote by Div? (C) the set of de-
gree d divisors and by Pic? (C) its quotient by linear equivalence. Fix
Py e C. For

D= a;D; € Div?(C)

define i (D) € Q! (C)* by

p(D): QYC) — R
w — Ziaif]foiw

by fixing paths from pg to p;.
For a path in H; (C,Z) we have i (D) € A, hence we obtain a well defined
map

p: Divi(C) — J(C)=RI/A
D = (D)

Remark: If d > 0 choice of Py corresponds to the Jacobi inversion constant
2 in Theorem 2.19.

Example 2.14. We compute the image p (C') of all points of C' in the case
of Example 2.9. Consider the choice of break points and Py as follows:

X Xy

\T_/X_y

_X y _y

Recall that (z,y) € R? corresponds to a 1-form ®~! (z,y). Consider paths
~; of length I, b+ lo and b+ I3 as follows
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We obtain the integrals

/ Yz, =h(z+y) =1, L) (z,9)

Y1
/d)‘l(x,y):b(m+y)+l2$=(b+l2ab)'(fﬂay)
/q»-l(x,y):b<x+y>+zgy=(b,b+l3>-(:c,y>

hence

p(Pr) = (l1,01)-
1 (Py) = (b+12,b)-
p(Ps) = (b,b+13)-

and we obtain p (C) as

_—
//
(b,b+c)
(b,b) (a+b,b)

(0,0)
Theorem 2.15 (Tropical Abel theorem). For any d the map p factors
through Pic? (C)
Divl(C) — Pic?(C)
U
J(C)
and ¢ is injective.

Example 2.16. We illustrate p (D) =0 for D = (f) with f € M (C) at an
example. The general case works the same way.
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Consider the curve

and the rational function f specified by
-8
P
1tR
Q
7

D=(f)=7Q—-8P+R=7(Q—P)+(R—P)

with divisor

In terms of the following paths

¥,

/ P

R ’Y3 ’Y4

Q
Y,

and choosing the base point Py = P we have

M(D)z?[str/w—%A



TROPICAL LINEAR SYSTEMS AND THE TROPICAL JACOBIAN 25

Using the cycles

M+rv2—73=0
v3—71 =0

we get
u(D):?/ +/ +A
73 72
—1 [ w3 [ 4 [
3 iz Y2
— [z s s ]
M 72 V3 V4
::/+A
v
=Q(Q'(5).) =0
where

Y=7+272+ 373+ 301
is the path associated to f.

We now give the general proof of the statement in Theorem 2.15 that p
factors through Pic? (C).

Proof. Let f € M (C) and

(f)=D=3%,P—->,Q
Define
path (f) = Zai%

where ~; is a path of constant slope a; of f.

We claim
P;
M(D)—Z/ +A—/ +A
i i p

ath(f)

Choose break points B; (different from the P;,@Q;) and a basis d1, ..., dq4
of Hy (C,Z) such that any §; contains exactly one B;.

Denote by ¢; the unique paths from Q; to FP; avoiding all B;. We have to
show that

) i = path (f) mod Hy (C,Z)
Consider the curve C' with C' = C\ {B4, ..., By}. We show that

Z e; = path (') = path () + > if (Bj) 4;
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for

f—f+z )-t; € M(C')

The second equality is clear by construction of f’.

For the first equality note that (f’) = (f) C |C’| as divisors on C' and C,
respectively. Furthermore f’ is non-zero only on the ;.

Then

po)= [ +a=Q(¢ ) paih () =0

The last expression is zero as in path (f) each path 7; occurs with multiplicity
equal to the slope of f, hence paired with a cycle we sum up the differences
of function values of f along, hence get 0. O

To put it differently, we are integrating the exact form df over a cycle.

Example 2.17. For the other direction we consider a divisor D of deg D = 0
and with p (D) = 0 and construct an f € M (C) with

(f)=D
Take, for example, D = P — Q on

1
1 O
P

As any 1-form is zero on the middle edge, we have f p =0 hence u = 0.
Consider the base point Py and paths « from P to @ and « ( from Py
to = as follows

Poq X
~_

Then
f(2) =Q (e, a(z))

is a rational function with slopes
7

0
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and (f) =P — Q.

The function f is independent of the choice of « (x) as for any cycle §
Qa.0) = [ Q@) =n(D) Q) =0

by assumption (note that only for cycles Q () is defined).
Proof. Now assume

D=3,P—3,Q; € Div’ (C)
and u (D) = 0. We construct an f € M (C) with

D =(f)
Choose paths «; from P; to (); such that

> [ =0

Then take
f@) =Y Qana @)

for a choice of a path « (z) from Py to z. Again f is independent of the
choice of « () as for any cycle § we have

Yo=Y [ Q@ =o

2.5. Theta functions. The tropical Laurent series

0@ —max{Q(na) - ;00

AEA

in z € RY has a A-periodic corner locus as the value of © changes under
translation in A by a affine linear function in z:

Lemma 2.18. For any u € A we have

O (r+ 1) =0 () +Q () ~ 5Q (1, 1)

Proof. Inside the maximum we have
QU+ 1)~ QAN
= QO ) + Q1)+ Qp) — 3@ (= A~ 1) = Q(1,7) — 5Q (1, )

2
= QO )~ Q= A= )+ Q (1) + 5@ (o)
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which implies

O (z+ p) ZQgE{Q(A,x+u);Q(A,A)}

X
€A 2

= ma {Q(A—u,w)—lQ(/\—u,/\—u)}
+Q(uw)+%@(u,u>

~ nax {Q (V.x) = Q. A’)}

ANeA
1
+Q(w2) +5Q (k1)
O
So we can associate to © a A-periodic tropical hypersurface trop ©® C RY
and hence a well defined tropical hypersurface, i.e., divisor
trop© C RI/A
2.6. Jacobi inversion. For A € RY denote by O, (z) := ©(z — \) the
translated theta function and trop O its divisor in J (C). Let Dy = p* trop ©)

the pull back of trop ©, to C via the Abel-Jacobi map p: C' — J (C). With-
out proof we state:

Theorem 2.19. For any A € J (C) the divisor D) is effective of degree g.
There is a universal s € J (C) such that
p(Dy)+ =X for all A € J(C)

Hence ¢ is bijective.

REFERENCES

[1] A. Gathmann, and M. Kerber, A Riemann-Roch theorem in tropical geometry,
arXiv:math/0612129v2 [math.CO].

[2] G. Mikhalkin, and Ilia Zharkov, Tropical curves, their Jacobians, and theta functions,
arXiv:math/0612267v2 [math.AG].

DEPARTMENT OF MATHEMATICS, UNIVERSITAT DES SAARLANDES, CAMPUS E2 4, D-
66123 SAARBRUCKEN, GERMANY
E-mail address: boehm@math.uni-sb.de



