TROPICAL LINEAR SYSTEMS AND THE TROPICAL JACOBIAN

JANKO BÖHM

Abstract. These are the notes for a series of talks on tropical linear systems, and the tropical Abel-Jacobi theorem. They give examples and details on results from [1] and [2].

1. Tropical linear systems

1.1. **Introduction.** Given a divisor D on a compact Riemann surface C of genus $g = h^0(\Omega^1) = h^0(K)$, we ask to determine the dimension $h^0(D)$ of $H^0(C, \mathcal{O}_C(D))$, that is, the number of independent meromorphic functions f on C with

$$
(f) + D \ge 0
$$

The Riemann-Roch theorem tells us

Theorem 1.1.

$$
h^{0}(D) = \deg(D) - g(C) + 1 + h^{0}(K - D)
$$

Remark 1.2. The Riemann-Roch theorem gives a picture of the behaviour of the dimension of a generic linear system of an effective divisor

$$
h^{0}(D) = \begin{cases} 1 & \text{for deg}(D) \le g(C) \\ \deg(D) - g(C) + 1 & \text{for deg}(D) > g(C) \end{cases}
$$

A divisor with $h^0(K - D) \neq 0$ is called special.

Remark 1.3. To illustrate the usefulness of the Riemann-Roch theorem, we recall how it implies some basic facts on curves:

If $g(C) \geq 2$ then the complete linear system |K| has no base points: If $p \in C$ would be in the base locus of |K|, then

$$
h^{0}(K - p) = h^{0}(K) = g(C)
$$

Hence the Riemann-Roch theorem tells us, that

$$
h^{0}(p) = \deg (p) - g(C) + 1 + h^{0}(K - p)
$$

= 1 - g(C) + 1 + g(C)
= 2

Hence there is a non-constant meromorphic function on C , which is holomorphic on $C - \{p\}$ and has a single pole at p. Hence S would be biholomorphic to \mathbb{P}^1 , which has genus 0.

So K gives a morphism

$$
\iota_K: C \rightarrow \mathbb{P}^{g(C)-1}
$$

$$
p \mapsto (\omega_1(p) : ... : \omega_g(p))
$$

where $\omega_1, ..., \omega_g$ are a basis of H^0 (C,Ω^1 .

This map is injective, if for all points $p, q \in C$ there is an $\omega \in H^0$ (
This map is injective, if for all points $p, q \in C$ there is an $\omega \in H^0$ (C,Ω^1 with

$$
\omega(p) = 0, \, \omega(q) \neq 0
$$

and it is an immersion, if for all $p \in C$ there is an $\omega \in H^0$ (C,Ω^1 such that ω vanishes to order exactly 1 at p.

Hence ι_K is an embedding iff for all p, q

$$
h^{0}\left(K-p-q\right) < \underbrace{h^{0}\left(K-p\right)}_{g(C)-1}
$$

On the other hand, by the Riemann-Roch theorem, the left hand side is

$$
h^{0}(K - p - q) = g(C) - 3 + h^{0}(p + q)
$$

hence

$$
h^{0}(K - p - q) < h^{0}(K - p) \Leftrightarrow h^{0}(p + q) = 1
$$

Hence ι_K fails to be an embedding, iff there is a meromorphic function on C that has only two poles, that is, iff C is a two-sheeted covering of \mathbb{P}^1 . Such a Riemann surface is called hyperelliptic.

1.2. Tropical curves.

Definition 1.4. For us, a graph Γ is a (finite) set $V(\Gamma)$ of vertices and a set $E(\Gamma)$ of edges which are unordered pairs of elements of $V(\Gamma)$, i.e., we allow edges connecting a vertex to itself.

The **valence** val (P) of a vertex P is the number of edges P is contained in.

A metric graph, is a graph together with a length function

$$
l:E(\Gamma)\to\mathbb{R}_{>0}
$$

Consider intervals $I_e = [0, l(e)] \subset \mathbb{R}$ for $e \in E(\Gamma)$ and glue I_{e_1} and I_{e_2} at end points, if $e_1 \cap e_2 \neq \emptyset$ give a topological space, called the **geometric** realization $|Γ|$ of Γ.

The first betti number of Γ is called the **genus** $q(\Gamma)$. It holds

 $g(\Gamma) = |E(\Gamma)| - |V(\Gamma)| + \text{\#connected components}$

For us, a **tropical curve** is a connected metric graph Γ with val $(P) \geq 2$ for all $P \in V(\Gamma)$.

Two curves are called **equivalent**, if they represent the same metric space.

Example 1.5. Tropical curves of $g(C) = 0$

Remark 1.6. We could also allow 1-valent vertices. Then we can consider

 $l : E(\Gamma) \to \mathbb{R}_{>0} \cup \{\infty\}$

and have unbounded edges with a vertex at infinity and the edge is identified with $[0, \infty]$.

Remark 1.7. If these abstract tropical curves are embedded into a tropical toric variety

$$
T(TV(\Sigma)) = \frac{\text{Hom}_{\mathbb{R}}\left(\mathbb{R}^{\Sigma(1)}, \mathbb{R}\right)}{\text{Hom}_{\mathbb{R}}\left(A_{n-1}\left(TV\left(\Sigma\right)\right) \otimes \mathbb{R}, \mathbb{R}\right)}
$$

(of dimension n), we add (counted with multiplicity) degree many unbounded edges corresponding to rays $\Sigma(1)$.

1.3. Divisors.

Definition 1.8. A divisor on a tropical curve C is an element of the free abelian group Div C generated by the points of $|C|$, that is,

$$
D = \sum_{i} a_i P_i
$$

with $a_i \in \mathbb{Z}$ and $P_i \in |C|$.

The **degree** of D is

$$
\deg D = \sum_i a_i
$$

The divisor D is called **effective** if $a_i \geq 0$ for all *i*.

1.4. Rational functions.

Definition 1.9. A rational function on an open subset $U \subset |C|$ is a continuous piecewise linear function

$$
f:U\to\mathbb{R}
$$

(with a finite number of pieces) with integer slopes.

Denote by $\mathcal{M}(U)$ the set of rational functions on U.

If we allow for unbounded edges, then f may take values $\pm \infty$ at the unbounded edges.

Example 1.10. A rational function on $|C|$ is given (up to a constant) by specifying slopes:

The slope may also change in the interior of edges

1.5. Principal divisors.

Definition 1.11. Denote by t_i the coordinate on C given by an outward primitive tangent vectors at a point $P \in |C|$.

Given a rational function $f: U \to \mathbb{R}$ we define the **order** of f at P as

$$
\mathrm{ord}_P\left(f\right)=\textstyle{\sum_i}\frac{\partial f}{\partial t_i}\left(P\right)
$$

that is, the sum of all outgoing slopes.

A rational function $f: U \to \mathbb{R}$ is called **regular**, if $\text{ord}_p(f) \geq 0$ for all $p \in U$.

Definition 1.12. Then the **principal divisor** of $f : |C| \to \mathbb{R}$ is

$$
(f) = \sum_{P \in |C|} \text{ord}_P(f) P
$$

Example 1.13. The principal divisor of a rational function

Proposition 1.14. The degree of a principal divisor of a rational function $f:|C|\to\mathbb{R}$ is

$$
\deg\left(f\right)=0
$$

Proof. As

$$
\operatorname{ord}_P(f) = \sum_i \frac{\partial f}{\partial t_i}(P)
$$

each slope appears in

$$
\deg\left(f\right) = \sum_{P \in |C|} \text{ord}_P\left(f\right)
$$

twice (inward and outward) with opposite sign. \Box

Corollary 1.15. There is no non-constant regular function on $|C|$.

1.6. Canonical divisors.

Definition 1.16. The canonical divisor of C is

$$
K_C = \sum_{P \in V(C)} (\text{val}(P) - 2) P
$$

Note, that if a curve degenerates into $C_0 =$ S i_jC_i then in the tropical curve $\overline{ }$

$$
\sum_{j, j \neq i} C_i \cdot C_j = \text{val}(C_i)
$$

hence by $C_0.C_i = 0 \ \forall i$ we have

$$
C_i.C_i = -\operatorname{val}(C_i)
$$

By adjunction formula

$$
K_C.C_i = -C_i.C_i - 2 = \text{val}(C_i) - 2
$$

Example 1.17. Canonical divisors, genus $g(C) = 0$

Remark 1.18. What is a meromorphic 1-form, the divisor of a meromorphic 1-form, and why is it a canonical divisor?

1.7. Linear systems.

Definition 1.19. For a divisor D on C define the space of global sections of D

$$
\mathcal{L}(D) = \{ f \in \mathcal{M}(C) \mid D + (f) \ge 0 \}
$$

and the corresponding complete linear system

$$
|D| = \{D + (f) \mid f \in \mathcal{L}(D)\}
$$

of divisors **linearly equivalent** to D (that is differing from D by a principal divisor).

The dimension of the linear system is defined as

$$
\dim |D| = \max \{ k \mid \mathcal{L}(D - P_1 - \dots - P_k) \neq 0 \,\forall P_1, ..., P_k \in |C| \}
$$

and dim $|D| = -1$ if $\mathcal{L}(D) = 0$.

The space $\mathcal{L}(D)$ depends only on the metric space represented by C. Global rescaling of the metric structure of C and simultaneously of D does not change dim $|D|$.

Remark 1.20. As deg $(f) = 0$, all divisors in the linear system have the same degree

$$
\deg(D + (f)) = \deg(D)
$$

If $\deg(D) < 0$ then for all f we have $\deg(D+(f)) = \deg(D) < 0$ hence $D + (f) \not\geq 0$, so

$$
\deg(D) < 0 \Rightarrow \dim|D| = -1
$$

Otherwise

 $\dim |D| \leq \deg (D)$

Example 1.21. Consider the canonical divisor $K_C = Q_1 + Q_2$ of the curve $\mathcal C$

Suppose that

$$
K_C + (f) = P_1 + P_2
$$

We can achieve any two points on the middle edge via the rational function with slopes

hence the set of all divisors linear equivalent to K_C is parametrized by

 $(P_1, P_2) \in [0, a]^2$

We will show later that P_1 and P_2 cannot lie on the two different cycles. Suppose P_1 and P_2 lie on the cycle containing Q_1 then the continuity of the f implies that P_1 and P_2 have the same distance from Q_1 . So we consider the rational function

As $P_1 + P_2 = P_2 + P_1$ we obtain $|D|$ as the S_2 -quotient of

Example 1.22. We now compute the dimension of the linear system in the previous Example 1.21:

For any $P_1 \in C$ there is an f with

$$
(f) + K_C = P_1 + P_2
$$

Then

$$
(f) + K_C - P_1 = P_2 \ge 0
$$

hence

$$
f \in \mathcal{L}(K_C - P_1)
$$

that is, dim $|K_C| \geq 1$.

On the other hand there are P_1, P_2 , for example

such that for all \boldsymbol{f}

$$
(f) + K_C \neq P_1 + P_2
$$

As
$$
(f) + K_C - P_1 - P_2 \neq 0
$$
 but
\n
$$
\deg ((f) + K_C - P_1 - P_2) = 0
$$

we have

$$
(f) + K_C - P_1 - P_2 \ngeq 0
$$

So we conclude

 $\dim |K_C| = 1$

Example 1.23. If we consider the following divisor $Q_1 + Q_2$ on the curve C from Example 1.21

we will see later that

$$
(f) + Q_1 + Q_2 = P_1 + P_2
$$

with P_i on the same loop as Q_i , hence, by continuity, f has to be constant, that is,

$$
\mathcal{L}\left(Q_1+Q_2\right)=\mathbb{R}
$$

and

$$
\dim |Q_1 + Q_2| = 0
$$

Proposition 1.24. Let D be a divisor on C. Then $\mathcal{L}(D)$ has the structure of a tropical semimodule, over the tropical semiring

$$
\mathbb{T}=(\mathbb{R},\oplus,\odot)
$$

with

$$
a \oplus b = \max(a, b)
$$

$$
a \odot b = a + b
$$

that is, $\mathcal{L}(D)$ is subset of

$$
\mathbb{T}^{|C|} = \{|C| \to \mathbb{T}\}
$$

which is closed under pointwise \oplus

$$
\mathcal{L}(D) \times \mathcal{L}(D) \to \mathcal{L}(D)
$$

$$
f \oplus g = (P \mapsto f(P) \oplus g(P) = \max \{ f(P), g(P) \})
$$

and scalar multiplication

$$
\mathbb{T} \times \mathcal{L}(D) \to \mathcal{L}(D)
$$

$$
\lambda \odot f = (P \mapsto \lambda \odot f(P))
$$

Proof. Suppose $f, g \in \mathcal{L}(D)$ and $\lambda \in \mathbb{T}$. Then for the principal divisor of f it holds

$$
(\lambda \odot f) = (\lambda + f) = (f)
$$

that is

 $\lambda \odot f \in \mathcal{L}(D)$

If $f(P) > g(P)$ then

$$
\mathrm{ord}_P\,(f\oplus g)=\mathrm{ord}_P\,(f)
$$

If $f(P) = g(P)$ then

$$
\frac{\partial}{\partial t_i} \left(f \oplus g \right) = \max \left\{ \frac{\partial f}{\partial t_i}, \frac{\partial g}{\partial t_i} \right\}
$$

So in any case

$$
\mathrm{ord}_P\left(f\oplus g\right)\geq\mathrm{max}\left\{\mathrm{ord}_P\left(f\right),\mathrm{ord}_P\left(g\right)\right\}
$$

hence

$$
\operatorname{ord}_P(f \oplus g) + D(P) > 0 \,\forall P \in |C|
$$

(with the coefficient $D(P)$ of P in D), that is,

$$
f\oplus g\in\mathcal{L}\left(D\right)
$$

We already used the following lemma to calculate the dimension of the linear system in the above example:

Lemma 1.25. Let D be a divisor of integer points on C , that is, of integer distance from the vertices, let

$$
D + (f) = P_1 + \dots + P_n
$$

(with P_i not necessarily distinct) and P_i a non-integer point of $|C|$ on a cycle C' of C. Then there is a second non-integer point $P_j \neq P_i$ with $P_j \in C'$.

Proof. We identify the cycle with the interval $[0, l(C')]$. Suppose there is only one non-integer point P_i on C' . If f has a multiple zero, the claim is obvious.

Now assume that f has a single zero. Let $x \in \mathbb{Z} \cap [0, l(C')]$ with

$$
P_i \in [x-1, x]
$$

By adding a constant to f we can assume that

$$
f\left(0\right),...,f\left(x-1\right)\in\mathbb{Z}
$$

As f has integer slopes and $|P_i - x| \notin \mathbb{Z}$ and ord $P(f) = 1$ $f(x),..., f(t)$ ¡ (C')) $\notin \mathbb{Z}$

a contradiction to

$$
f\left(0\right) = f\left(l\left(C'\right)\right)
$$

by continuity. \Box

$$
\overline{a}
$$

1.8. Integer curves. Suppose C is a tropical curve with

$$
l: E(C) \to \mathbb{Z}_{>1}
$$

Introducing 2-valent vertices, we can assume that all edges have length one, for example

Remark 1.26. If

$$
(f) = \sum_i a_i P_i
$$

is a divisor of integer points of C then the function f is determined by linear interpolation of the values of f at the vertices. The principal divisor of f can be described by the formula

$$
(f) = \sum_{(P,Q)\in E(C)} (f(P) - f(Q))(P - Q)
$$

(note that the terms are independent of the ordering of the tuple (P,Q)).

We can use this formula to compute the discrete linear system

$$
\tilde{\mathcal{L}}(D) = \{ f \in \mathcal{M}(C) \mid D + (f) \ge 0, D + (f) \text{ integer divisor} \}
$$

$$
|\widetilde{D}| = \{ D + (f) \mid f \in \tilde{\mathcal{L}}(D) \}
$$

and its dimension

$$
\tilde{r}(D) = \max \left\{ k \mid \begin{array}{c} \forall P_1, ..., P_k \in V(C) \,\exists f : V(C) \rightarrow \mathbb{Z} \text{ with} \\ D + (f) - P_1 - ... - P_k \ge 0 \end{array} \right\}
$$

Example 1.27. Starting with

we can achieve all the following configurations

using appropriate integer functions (as constructed already above). These configurations form $|K_C|$.

Using this we observe that for all $P \in V(C)$ there is an $f: V(C) \to \mathbb{Z}$ with $(f) + D - P \geq 0$. On the other hand there are configurations of two points, which cannot be achieved. We conclude again

$$
\tilde{r}(K_C) = 1
$$

The formula for (f) represents **chip-firing**: Given a subgraph with a divisor of degree d_i on a boundary point P_i of external valency r_i , we can simultaneously move one point along each edge emanating from the subgraph at P_i provided $d_i \geq r_i \ \forall i$.

Example 1.28. We use chip-firing to relate the linear equivalent divisors of the previous Example 1.27 (shading the subgraph):

1.9. Riemann-Roch theorem. We now prove the theorem of Riemann-Roch using the corresponding result of Baker and Norine in the case of non-metric graphs.

Theorem 1.29. For an integer divisor D on an integer tropical curve C , we have

$$
\tilde{r}(D) - \tilde{r}(K_C - D) = \deg(D) + 1 - g(C)
$$

We want to show from this:

Theorem 1.30. For a divisor D on a tropical curve C , we have

$$
\dim |D| - \dim |K_C - D| = \deg (D) + 1 - g(C)
$$

First of all, we approximate by a curve C with

$$
l:E(C)\to \mathbb{Q}_{>0}
$$

and a rational divisor. Rescaling the curve we may assume

 $l: E(C) \rightarrow \mathbb{Z}_{\geq 1}$

and D integer. Rescaling further we get

$$
\tilde{r}(D) = \dim |D|
$$

$$
\tilde{r}(K_C - D) = \dim |K_C - D|
$$

by Lemma 1.32, which follows from the following Lemma 1.31 :

Lemma 1.31. Let D be integer on integer C. If there is an f with $(f)+D \geq$ 0, then there is an f such that

$$
(f) + D \ge 0
$$

and $(f) + D$ is integer.

Proof. We prove the claim by induction on the degree $m = \deg D$. For $m < 0$ nothing is to show. Write

$$
(f) + D = P_1 + \dots + P_m
$$

If $m = 0$ then $(f) + D = 0$ is integer. If $m > 0$ then

$$
(f) + D - P_1 = P_2 + \dots + P_m \ge 0
$$

hence

$$
\mathcal{L}\left(D-P_{i}\right)\neq0
$$

If some P_i is integer, then by the induction hypothesis

$$
\tilde{\mathcal{L}}\left(D-P_{i}\right)\neq0
$$

and hence $\tilde{\mathcal{L}}(D) \neq 0$.

Suppose all P_i are not integer: We may assume that P_m has among all P_i the minimal distance from an integer vertex P of C . Consider the function $h:|C|\to\mathbb{R}$ ½

$$
Q \mapsto \left\{ \begin{array}{ll} -\min\left\{ \|P_m - P\| \, , \|Q - P_i\| \mid i \right\} & \text{if } Q \text{ is in the conn. comp. of } P \\ 0 & \text{otherwise} \end{array} \right.
$$

Example:

Then

$$
f + h \in \mathcal{L}(D - P)
$$

\n
$$
\Leftrightarrow \underbrace{(f + h)}_{(f) + (h)} + D - P \ge 0
$$

\n
$$
\Leftrightarrow (h) + P_1 + \dots + P_m - P \ge 0
$$

Assume this divisor has a summand which is a negative multiple of Q. First of all, $Q \neq P$ as ord $P(h) \geq 1$.

Hence h has a pole at Q, so $Q = P_i$ for some i, so $\text{ord}_Q(h) = -2$. This is only possible if Q is in the interior of the connected component of P. So the connected component contains a cycle and Q is the only point of

 $(f) + D$ on the cycle.

This gives a contradiction to Lemma 1.25.

By the induction hypothesis

$$
\tilde{\mathcal{L}}\left(D-P\right)\neq0
$$

and hence $\tilde{\mathcal{L}}(D) \neq 0.$

Lemma 1.32. Let D be integer on an integer C. Then there is an $N \geq 1$ such that on any multiple of $N \cdot C$ it holds

$$
\dim |D| = \tilde{r}(D)
$$

Proof. Let $m = \dim |D| + 1$. For all $P_1, ..., P_{m-1}$

$$
\mathcal{L}\left(D-P_1-\ldots-P_{m-1}\right)\neq 0
$$

hence by the previous Lemma 1.31

$$
\tilde{\mathcal{L}}\left(D - P_1 - \dots - P_{m-1}\right) \neq 0
$$

so by definition

$$
\tilde{r}(D) \ge m - 1 = \dim |D|
$$

For the other inequality:

If dim $|D| + 1 >$ deg (D) (that is, dim $|D| =$ deg (D)) then

$$
\tilde{r}(D) \le \deg(D) \le \dim|D|
$$

If $m = \dim |D| + 1 \leq \deg(D) = n$ consider the map

$$
\pi_m: \{(f, P_1, ..., P_n) \mid D + (f) = P_1 + ... + P_n\} \to C^n \to C^m
$$

$$
(f, P_1, ..., P_n) \mapsto (P_1, ..., P_n) \mapsto (P_1, ..., P_m)
$$

As image $(\pi_m) \subset C^m$ is closed, and strictly smaller (as $m > \dim |D|$), there is a

 $(P_1, ..., P_m) \notin \text{image}(\pi_m)$

with rational coordinates. Rescale by

$$
N = \text{lcm}(\text{denom}(\text{dist}\,(P_i, C \cap \mathbb{Z})) \mid i)
$$

By construction

hence also

so

$$
\tilde{r}(D) \le m - 1 = \dim |D|
$$

 \Box

Example 1.33. For $D = K_C$ we obtain

$$
\dim |K_C| = \deg (K_C) + 1 - g(C)
$$

=
$$
\sum_{P \in V(C)} (\text{val}_P(C) - 2) + 1 - g(C)
$$

=
$$
2 |E(C)| - 2 |V(C)| + 1 - g(C)
$$

=
$$
2g(C) - 2 + 1 - g(C)
$$

=
$$
g(C) - 1
$$

as

$$
g(C) = |E(C)| - |V(C)| + 1
$$

and

$$
\sum_{P \in V(C)} \text{val}_P(C) = 2 |E(C)|
$$

So we recover in Example 1.21

$$
\dim|K_C| = 2 + 1 - 2 = 1
$$

2. The tropical Jacobian

2.1. Tropical abelian varieties.

Definition 2.1. Consider \mathbb{R}^g with the lattice \mathbb{Z}^g . A tropical torus is a quotient \mathbb{R}^g/Λ by a lattice $\Lambda \subset \mathbb{R}^g$.

A polarized tropical abelian variety is a tropical torus together with a homomorphism

$$
\Lambda \to (\mathbb{Z}^g)^*
$$

such that the corresponding bilinear map

$$
\mathbb{R}^g\times\mathbb{R}^g\to\mathbb{R}
$$

is positive definite symmetric.

It is called **principally** polarized if $\Lambda \to (\mathbb{Z}^g)^*$ is an isomorphism.

2.2. Holomorphic 1-Forms.

Definition 2.2. The tangent space T_pC of C at p is the set of derivations ∂ $\frac{\partial}{\partial t_i}$ of C at p corresponding to the tangent directions t_i of C at p. A holomorphic differential form on C is a collection of maps

$$
\omega_p: T_pC \to \mathbb{R}
$$

such that

$$
\sum_{i} \omega_{p} \left(\frac{\partial}{\partial t_{i}} \right) = 0
$$

for all p.

Denote by $\Omega^1(C)$ the set of all holomorphic 1-forms, and by $\Omega^1_{\mathbb{Z}}(C)$ the space of forms taking integer values.

Example 2.3. A global holomorphic 1-form on a curve of genus 2 specifying the value of the form on tangent vectors.

Note that this is not a rational function. It is a flow on the curve, the value of the form on the tangent vector is the volume of the flow per unit of time.

Definition 2.4. Let C be a curve of genus g . A set of **break points** of C is a set of points $P_1, ..., P_g \in |C|$ of valency 2 together with a choice of an outward primitive integer tangent vector $\frac{\partial}{\partial t_i}$ at t_i for all i, such that $|C| \setminus \{P_1, ..., P_g\}$ represents a connected tree.

A choice of break points is equivalent to the choice of a connected fundamental domain $T \subset |C|$.

Example 2.5. A choice of break points for the curve in Example 2.3

A choice of break points specifies an isomorphism of R-vector spaces

$$
\Phi: \begin{array}{ccc} \Omega^1(C) & \to & \mathbb{R}^g \\ \omega & \mapsto & \left(\omega_{P_1}\left(\frac{\partial}{\partial x_1}\right),...,\omega_{P_g}\left(\frac{\partial}{\partial x_g}\right)\right) \end{array}
$$

and a basis of the lattice

 $\Omega^1_\mathbb{Z}\left(C\right)\subset\Omega^1\left(C\right)$

(as in the definition of $\Phi(\omega)$ we consider values on primitive integer tangent vectors), that is, the standard basis of

 $\mathbb{Z}^g\subset\mathbb{R}^g$

Example 2.6. For the choice of break points in Example 2.3 the bijection is given by associating to the form

the tuple $(x, y) \in \mathbb{R}^2$.

2.3. The tropical Jacobian. For any path γ in C and $\omega \in \Omega^1(C)$ we can define the integral

$$
\int_{\gamma}\omega\in\mathbb{R}
$$

by pulling back the tropical 1-form to a classical 1-form on the interval.

Example 2.7. We compute the integral of the form given in Example 2.3 (also specifying the metric structure on the curve) over the path γ

as

$$
\int_{\gamma} \omega = 1 \cdot 1 + 2 \cdot 3 = 7
$$

Let

$$
\Omega^1(C)^* = \text{Hom}_{\mathbb{R}}\left(\Omega^1(C), \mathbb{R}\right) \supset \Omega^1_{\mathbb{Z}}(C)^* \cong \left(\mathbb{Z}^g\right)^*
$$

be the space of R-valued linear functionals on $\Omega^1(C)$. We obtain a Zmonomorphism from the cycles to $\Omega^1(C)^*$

$$
H_1(C, \mathbb{Z}) \hookrightarrow \Omega_{\mathbb{Z}}^1(C)^* \subset \Omega^1(C)^*
$$

$$
\gamma \mapsto \int_{\gamma} = \left(\omega \mapsto \int_{\gamma} \omega\right)
$$

Definition 2.8. The Jacobian of the tropical curve C is

$$
J(C) = \Omega^{1}(C)^{*}/H_{1}(C, \mathbb{Z})
$$

By a choice of break points $H_1(C, \mathbb{Z})$ corresponds to a lattice $\Lambda \subset \mathbb{R}^g \cong$ $\Omega^{\mathbb{I}}(C)^*$ of rank g, and

$$
J\left(C\right)\cong\mathbb{R}^{g}/\Lambda
$$

Example 2.9. Consider the curve (metric structure with lengths a, b, c)

with the depicted choice of break points (specifying $\mathbb{Z}^g \subset \mathbb{R}^g$). Integrating over the cycle γ_1 we get

$$
\int_{\gamma_1} \Phi^{-1}(x, y) = b(x + y) + ax = (a + b, b) \cdot (x, y)
$$

that is

$$
\int_{\gamma_1} = (a+b, b) \cdot
$$

For γ_2 similarly

$$
\int_{\gamma_2} \Phi^{-1}(x, y) = b(x + y) + cy = (b, b + c) \cdot (x, y)
$$

that is

$$
\int_{\gamma_2} = (b, b + c) \cdot
$$

Hence the lattice Λ is generated by these two points

and $J(C)$ is the quotient.

Consider the bilinear map

$$
Q: \mathsf{Paths}\,(C) \times \mathsf{Paths}\,(C) \to \mathbb{R}
$$

defined by extending bilinearly the definition for any non-selfintersecting paths γ

 $Q(\gamma, \gamma) = \text{length}(\gamma)$

Example 2.10. Consider the paths $\gamma_1 + 2\gamma_2 + \gamma_3$ and $\gamma_1 + \gamma_2$ on

Then

 $Q(\gamma_1 + 2\gamma_2 + \gamma_3, \gamma_1 + \gamma_2) = a + 2b$

The map Q induces a symmetric bilinear form

 $Q: H_1(C, \mathbb{Z}) \times H_1(C, \mathbb{Z}) \to \mathbb{R}$

(as any zero-homologous cycle is trivial).

Lemma 2.11. The induced bilinear map

$$
\Omega^1(C)^* \times \Omega^1(C)^* \to \mathbb{R}
$$

is positive definite.

Proof. For

$$
\gamma = \sum_{E} a_E E
$$

we have

$$
Q(\gamma,\gamma) = \sum_{E} a_E^2 \operatorname{length}(E)
$$

 \Box

From Q we obtain a map

$$
\tilde{Q}: \Omega^1(C)^* \to \Omega^1(C)^{**} \cong \Omega^1(C)
$$

$$
\int_{\gamma} \mapsto \left(\int_{\gamma'} \mapsto Q(\gamma, \gamma') \right) \oplus \left(\int_{\gamma'} \mapsto \int_{\gamma'} \omega \right) \mapsto \omega
$$

which restricts to

$$
\begin{array}{cccc}\tilde{Q}:&\Omega^1_{\mathbb{Z}}\left(C\right)^{*}&\to&\Omega^1_{\mathbb{Z}}\left(C\right)\\&\cong&\cong&\\ \Lambda&&\mathbb{Z}^{g}\end{array}
$$

Example 2.12. We compute the image $\tilde{Q}(\gamma_1) \in \Omega_{\mathbb{Z}}^1(C)$, that is, we find an $\omega \in \Omega^1_{\mathbb{Z}}(C)$ such that

$$
(Q(\gamma_1, \gamma_1), Q(\gamma_1, \gamma_2)) \cdot = (a+b, b) \cdot = \left(\int_{\gamma_1} \omega, \int_{\gamma_2} \omega\right).
$$

The form ω is given by taking flow 1 along the cycle γ_1 and 0 otherwise:

In the same way, for a basis of $\Lambda \cong H_1(C, \mathbb{Z})$ such that any cycle in the basis contains exactly one break point, the basis is mapped to the standard basis of \mathbb{Z}^g , hence

$$
\tilde{Q}:\Omega^1_\mathbb{Z}\left(C\right)^*\to\Omega^1_\mathbb{Z}\left(C\right)
$$

is an isomorphism, so:

Proposition 2.13. $J(C)$ is a principally polarized tropical abelian variety.

2.4. Tropical Abel-Jacobi theorem. Denote by $Div^d(C)$ the set of degree d divisors and by $Pic^d(C)$ its quotient by linear equivalence. Fix $P_0 \in C$. For

$$
D = \sum_{i} a_i D_i \in \text{Div}^d(C)
$$

define $\tilde{\mu}(D) \in \Omega^1(C)^*$ by

$$
\tilde{\mu}(D): \Omega^1(C) \rightarrow \mathbb{R} \atop \omega \longmapsto \sum_i a_i \int_{p_0}^{p_i} \omega
$$

by fixing paths from p_0 to p_i .

For a path in $H_1(C, \mathbb{Z})$ we have $\tilde{\mu}(D) \in \Lambda$, hence we obtain a well defined map

$$
\mu: \operatorname{Div}^d(C) \longrightarrow J(C) \cong \mathbb{R}^g/\Lambda
$$

$$
D \longmapsto \tilde{\mu}(D)
$$

Remark: If $d > 0$ choice of P_0 corresponds to the Jacobi inversion constant \varkappa in Theorem 2.19.

Example 2.14. We compute the image $\mu(C)$ of all points of C in the case of Example 2.9. Consider the choice of break points and P_0 as follows:

Recall that $(x, y) \in \mathbb{R}^2$ corresponds to a 1-form $\Phi^{-1}(x, y)$. Consider paths γ_i of length l_1 , $b + l_2$ and $b + l_3$ as follows

We obtain the integrals

$$
\int_{\gamma_1} \Phi^{-1}(x, y) = l_1(x + y) = (l_1, l_1) \cdot (x, y)
$$

$$
\int_{\gamma_2} \Phi^{-1}(x, y) = b(x + y) + l_2 x = (b + l_2, b) \cdot (x, y)
$$

$$
\int_{\gamma_3} \Phi^{-1}(x, y) = b(x + y) + l_3 y = (b, b + l_3) \cdot (x, y)
$$

hence

$$
\mu(P_1) = (l_1, l_1) \cdot \mu(P_2) = (b + l_2, b) \cdot \mu(P_3) = (b, b + l_3) \cdot \mu(P_4)
$$

and we obtain $\mu(C)$ as

$$
\begin{array}{ccc}\n\text{Div}^d(C) & \longrightarrow & \text{Pic}^d(C) \\
\mu \searrow & \downarrow \phi \\
J(C)\n\end{array}
$$

and ϕ is injective.

Example 2.16. We illustrate $\mu(D) = 0$ for $D = (f)$ with $f \in \mathcal{M}(C)$ at an example. The general case works the same way.

Consider the curve

and the rational function f specified by

with divisor

$$
D = (f) = 7Q - 8P + R = 7(Q - P) + (R - P)
$$

In terms of the following paths

and choosing the base point $P_0 = P$ we have

$$
\mu(D) = 7 \int_{\gamma_3} + \int_{\gamma_2} + \Lambda
$$

Using the cycles

$$
\gamma_1 + \gamma_2 - \gamma_3 = 0
$$

$$
\gamma_3 - \gamma_4 = 0
$$

we get

$$
\mu(D) = 7 \int_{\gamma_3} + \int_{\gamma_2} + \Lambda
$$

= $4 \int_{\gamma_3} + 3 \int_{\gamma_4} + \int_{\gamma_2} + \Lambda$
= $\int_{\gamma_1} + 2 \int_{\gamma_2} + 3 \int_{\gamma_3} + 3 \int_{\gamma_4} + \Lambda$
=: $\int_{\gamma} + \Lambda$
= $Q(\tilde{Q}^{-1}(-), \gamma) = 0$

where

$$
\gamma = \gamma_1 + 2\gamma_2 + 3\gamma_3 + 3\gamma_4
$$

is the path associated to f .

We now give the general proof of the statement in Theorem 2.15 that μ factors through $Pic^d(C)$.

Proof. Let $f \in \mathcal{M}(C)$ and

$$
(f) = D = \sum_i P_i - \sum_i Q_i
$$

Define

$$
\operatorname{path}(f) = \sum_{i} a_i \gamma_i
$$

where γ_i is a path of constant slope a_i of f.

We claim

$$
\mu(D) = \sum_{i} \int_{Q_i}^{P_i} + \Lambda = \int_{\text{path}(f)} + \Lambda
$$

Choose break points B_i (different from the P_j, Q_j) and a basis $\delta_1, ..., \delta_g$ of $H_1(C, \mathbb{Z})$ such that any δ_i contains exactly one B_i .

Denote by ε_i the unique paths from Q_i to P_i avoiding all B_j . We have to show that $\overline{}$

$$
\sum_{i} \varepsilon_{i} = \text{path}(f) \,\text{mod}\, H_{1}\left(C, \mathbb{Z}\right)
$$

Consider the curve C' with $C' = C \setminus \{B_1, ..., B_g\}$. We show that

$$
\sum_{i} \varepsilon_{i} = \text{path}(f') = \text{path}(f) + \sum_{j} \frac{\partial f}{\partial t_{j}}(B_{j}) \delta_{j}
$$

for

$$
f' = f + \sum_{j} \frac{\partial f}{\partial t_j} (B_j) \cdot t_j \in \mathcal{M}(C')
$$

The second equality is clear by construction of f' .

For the first equality note that $(f') = (f) \subset |C'|$ as divisors on C' and C, respectively. Furthermore f' is non-zero only on the ε_i .

Then

$$
\mu(D) = \int_{\text{path}(f)} + \Lambda = Q\left(\tilde{Q}^{-1}(-), \text{path}(f)\right) = 0
$$

The last expression is zero as in path (f) each path γ_i occurs with multiplicity equal to the slope of f , hence paired with a cycle we sum up the differences of function values of f along, hence get 0. \Box

To put it differently, we are integrating the exact form df over a cycle.

Example 2.17. For the other direction we consider a divisor D of deg $D = 0$ and with $\mu(D) = 0$ and construct an $f \in \mathcal{M}(C)$ with

 $(f) = D$

Take, for example, $D = P - Q$ on

As any 1-form is zero on the middle edge, we have $\int_P^Q = 0$ hence $\mu(D) = 0$.

Consider the base point P_0 and paths α from P to Q and $\alpha(x)$ from P_0 to x as follows

Then

$$
f(x) = Q(\alpha, \alpha(x))
$$

is a rational function with slopes

and $(f) = P - Q$.

The function f is independent of the choice of $\alpha(x)$ as for any cycle δ

$$
Q(\alpha, \delta) = \int_{\alpha} \tilde{Q}(\delta) = \mu(D) \left(\tilde{Q}(\delta) \right) = 0
$$

by assumption (note that only for cycles $\tilde{Q}(\delta)$ is defined).

Proof. Now assume

$$
D = \sum_{i} P_i - \sum_{i} Q_i \in \text{Div}^{0}(C)
$$

and $\mu(D) = 0$. We construct an $f \in \mathcal{M}(C)$ with

$$
D = (f)
$$

Choose paths α_i from P_i to Q_i such that

$$
\sum_i \int_{\alpha_i} = 0
$$

Then take

$$
f(x) = \sum_{i} Q(\alpha_i, \alpha(x))
$$

for a choice of a path $\alpha(x)$ from P_0 to x. Again f is independent of the choice of $\alpha(x)$ as for any cycle δ we have

$$
\sum_{i} Q(\alpha_{i}, \delta) = \sum_{i} \int_{\alpha_{i}} \tilde{Q}(\delta) = 0
$$

2.5. Theta functions. The tropical Laurent series

$$
\Theta\left(x\right) = \max_{\lambda \in \Lambda} \left\{ Q\left(\lambda, x\right) - \frac{1}{2} Q\left(\lambda, \lambda\right) \right\}
$$

in $x \in \mathbb{R}^g$ has a A-periodic corner locus as the value of Θ changes under translation in Λ by a affine linear function in x:

Lemma 2.18. For any $\mu \in \Lambda$ we have

$$
\Theta(x + \mu) = \Theta(x) + Q(\mu, x) - \frac{1}{2}Q(\mu, \mu)
$$

Proof. Inside the maximum we have

$$
Q(\lambda, x + \mu) - \frac{1}{2}Q(\lambda, \lambda)
$$

= $Q(\lambda - \mu, x) + Q(\mu, x) + Q(\lambda, \mu) - \frac{1}{2}Q(\lambda - \mu, \lambda - \mu) - Q(\mu, x) - \frac{1}{2}Q(\mu, \lambda)$
= $Q(\lambda - \mu, x) - \frac{1}{2}Q(\lambda - \mu, \lambda - \mu) + Q(\mu, x) + \frac{1}{2}Q(\mu, \mu)$

which implies

$$
\Theta(x + \mu) = \max_{\lambda \in \Lambda} \left\{ Q(\lambda, x + \mu) - \frac{1}{2} Q(\lambda, \lambda) \right\}
$$

=
$$
\max_{\lambda \in \Lambda} \left\{ Q(\lambda - \mu, x) - \frac{1}{2} Q(\lambda - \mu, \lambda - \mu) \right\}
$$

+
$$
Q(\mu, x) + \frac{1}{2} Q(\mu, \mu)
$$

=
$$
\max_{\lambda' \in \Lambda} \left\{ Q(\lambda', x) - \frac{1}{2} Q(\lambda', \lambda') \right\}
$$

+
$$
Q(\mu, x) + \frac{1}{2} Q(\mu, \mu)
$$

 \Box

So we can associate to Θ a Λ -periodic tropical hypersurface trop $\Theta \subset \mathbb{R}^g$ and hence a well defined tropical hypersurface, i.e., divisor

$$
\operatorname{trop} \Theta \subset \mathbb{R}^g/\Lambda
$$

2.6. **Jacobi inversion.** For $\lambda \in \mathbb{R}^g$ denote by $\Theta_{\lambda}(x) := \Theta(x - \lambda)$ the translated theta function and trop Θ_{λ} its divisor in $J(C)$. Let $D_{\lambda} = \mu^*$ trop Θ_{λ} the pull back of trop Θ_{λ} to C via the Abel-Jacobi map $\mu : C \to J(C)$. Without proof we state:

Theorem 2.19. For any $\lambda \in J(C)$ the divisor D_{λ} is effective of degree g. There is a universal $\varkappa \in J(C)$ such that

$$
\mu(D_{\lambda}) + \varkappa = \lambda \text{ for all } \lambda \in J(C)
$$

Hence ϕ is bijective.

REFERENCES

- [1] A. Gathmann, and M. Kerber, A Riemann-Roch theorem in tropical geometry, arXiv:math/0612129v2 [math.CO].
- [2] G. Mikhalkin, and Ilia Zharkov, Tropical curves, their Jacobians, and theta functions, arXiv:math/0612267v2 [math.AG].

DEPARTMENT OF MATHEMATICS, UNIVERSITÄT DES SAARLANDES, CAMPUS E2 4, D-66123 SAARBRÜCKEN, GERMANY

E-mail address: boehm@math.uni-sb.de