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Calabi-Yau varieties and mirror symmetry

Supersymmetric string theory (unify gravity + QM)

World
locally
= (4-dim spacetime) � (3-dim compact cx m�d X )

X Calabi-Yau variety: KX = ^3T �X = Ω3
X
�= OX

X

B-model of X
B-model of X_

A-model of X
A-model of X_

Algebraic geometry $ Symplectic geometry
Mcomplex (X ) � MK ähler (X_)

Deformations of
complex structure symplectic structure

Tangent spaces
H1 (TX ) = H2,1 (X ) �= H1,1 (X_)

by Bogomolov-Tian-Todorov if Moser
H0 (TX ) = H2,0 (X ) = H1,0 (X ) = 0
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Deformations of

complex structure symplectic structure
Tangent spaces

H1 (TX ) = H2,1 (X ) �= H1,1 (X_)
by Bogomolov-Tian-Todorov if Moser
H0 (TX ) = H2,0 (X ) = H1,0 (X ) = 0

Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 2 / 16



Calabi-Yau varieties and mirror symmetry

Supersymmetric string theory (unify gravity + QM)

World
locally
= (4-dim spacetime) � (3-dim compact cx m�d X )

X Calabi-Yau variety: KX = ^3T �X = Ω3
X
�= OX

X

B-model of X
B-model of X_

A-model of X
A-model of X_

Algebraic geometry $ Symplectic geometry
Mcomplex (X ) � MK ähler (X_)
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Calabi-Yau varieties and mirror symmetry

H2,1 (X ) �= H1,1 (X_)
induces equality of Yukawa couplings
h�,�,�i = h�,�,�i

(from Picard-Fuchs (from # of g = 0 curves in
di¤erential equations) given homology class)
Algebraic geometry Symplectic geometry

& .
Tropical geometry

interpreting lattice points as
Deformations Divisor classes

(H1 (X_,O�X _) = H2 (X_,Z))
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Degenerations

UnderstandMcomplex (X ) near large complex structure limit X0.

X0 = fx0x1x2x3x4 = 0g � P4

Xt +t � g5

X0 = f x0x3 = x1x2 = 0g � P3

Xt +t � g2 + t � g2

X0 = fx0x1 = x1x2 = x2x3 = x3x4 = x4x0 = 0g � P4

Xt by structure theorem
of Buchsbaum-Eisenbud
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General setup

Flat family of Calabi-Yau varieties X �! Spec C [t] with �bers Xt � Y .
Y a Q-Gorenstein toric Fano variety de�ned by Σ = Fan (∆�) in
NR = N 
R, N = Zn.

Strata (X0) �= Sphere
\

Strata (Y ) = ∆

f x0x3 = x1x2 = 0g � P3

X : I � C [t]
 S
X0 : I0 � S S = C [xr j r 2 Σ (1)] graded by

0! M ! ZΣ(1) deg! An�1 (Y )! 0 0! Z3 ! Z4 ! Z! 0
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Example

(Loading quartic.gif)
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quarticA2.swf
Media File (application/x-shockwave-flash)



Example

(Loading torus.gif)
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torus.swf
Media File (application/x-shockwave-flash)



Tropical geometry and degenerations

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
. NR =

R4

R(1,1,1,1)
Tropical geometry associates to degenerations polyhedral combinatorics
objects in the space of weights.
f = t � x30 + t � x31 + t � x32 + x0x1x2
Weight: trop (f ) = min fwt + 3w0,wt + 3w1,wt + 3w2,w0 + w1 + w2g

Domains of linearity of trop (f )
\ fwt = 1g

Denote the tropical variety of I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I (considering t as a variable).

Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 8 / 16



Tropical geometry and degenerations

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
.

NR =
R4

R(1,1,1,1)
Tropical geometry associates to degenerations polyhedral combinatorics
objects in the space of weights.
f = t � x30 + t � x31 + t � x32 + x0x1x2
Weight: trop (f ) = min fwt + 3w0,wt + 3w1,wt + 3w2,w0 + w1 + w2g

Domains of linearity of trop (f )
\ fwt = 1g

Denote the tropical variety of I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I (considering t as a variable).

Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 8 / 16



Tropical geometry and degenerations

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
. NR =

R4

R(1,1,1,1)

Tropical geometry associates to degenerations polyhedral combinatorics
objects in the space of weights.
f = t � x30 + t � x31 + t � x32 + x0x1x2
Weight: trop (f ) = min fwt + 3w0,wt + 3w1,wt + 3w2,w0 + w1 + w2g

Domains of linearity of trop (f )
\ fwt = 1g

Denote the tropical variety of I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I (considering t as a variable).

Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 8 / 16



Tropical geometry and degenerations

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
. NR =

R4

R(1,1,1,1)
Tropical geometry associates to degenerations polyhedral combinatorics
objects in the space of weights.

f = t � x30 + t � x31 + t � x32 + x0x1x2
Weight: trop (f ) = min fwt + 3w0,wt + 3w1,wt + 3w2,w0 + w1 + w2g

Domains of linearity of trop (f )
\ fwt = 1g

Denote the tropical variety of I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I (considering t as a variable).

Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 8 / 16



Tropical geometry and degenerations

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
. NR =

R4

R(1,1,1,1)
Tropical geometry associates to degenerations polyhedral combinatorics
objects in the space of weights.
f = t � x30 + t � x31 + t � x32 + x0x1x2

Weight: trop (f ) = min fwt + 3w0,wt + 3w1,wt + 3w2,w0 + w1 + w2g

Domains of linearity of trop (f )
\ fwt = 1g

Denote the tropical variety of I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I (considering t as a variable).

Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 8 / 16



Tropical geometry and degenerations

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
. NR =

R4

R(1,1,1,1)
Tropical geometry associates to degenerations polyhedral combinatorics
objects in the space of weights.
f = t � x30 + t � x31 + t � x32 + x0x1x2
Weight: trop (f ) = min fwt + 3w0,wt + 3w1,wt + 3w2,w0 + w1 + w2g

Domains of linearity of trop (f )
\ fwt = 1g

Denote the tropical variety of I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I (considering t as a variable).

Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 8 / 16



Tropical geometry and degenerations

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
. NR =

R4

R(1,1,1,1)
Tropical geometry associates to degenerations polyhedral combinatorics
objects in the space of weights.
f = t � x30 + t � x31 + t � x32 + x0x1x2
Weight: trop (f ) = min fwt + 3w0,wt + 3w1,wt + 3w2,w0 + w1 + w2g

Domains of linearity of trop (f )
\ fwt = 1g

Denote the tropical variety of I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I (considering t as a variable).

Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 8 / 16



Tropical geometry and degenerations

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
. NR =

R4

R(1,1,1,1)
Tropical geometry associates to degenerations polyhedral combinatorics
objects in the space of weights.
f = t � x30 + t � x31 + t � x32 + x0x1x2
Weight: trop (f ) = min fwt + 3w0,wt + 3w1,wt + 3w2,w0 + w1 + w2g

Domains of linearity of trop (f )
\ fwt = 1g

Denote the tropical variety of I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I (considering t as a variable).
Janko Böhm (UdS, UCB) Mirror Symmetry via Tropical Geometry October 2009 8 / 16



Special �ber Gröbner cone

CI0 (I ) = fw 2 R�NR j inw (I ) = I0g
Intersecting with Bergman fan

BFI0 (I ) � CI0 (I )
Intersecting with plane fwt = 1g identi�es s = t

TI0 (I ) � r � NR

the special �ber tropical variety in the special �ber polytope.
Example:

x0x3 + t �
�
x20 + x0x1 + ...

�
x1x2 + t �

�
x20 + x0x1 + ...

�

TI0 (I ) is subcomplex of ∂r of same dim and codim as Xt .
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The special �ber polytope and deformations

What are the lattice points of r� � MR?
Decompose the generators of I into characters m of (C�)Σ(1).
Example:

f1 = x0x3 + t �
�
x20 + x0x1 + ...

�
f2 = x1x2 + t �

�
x20 + x0x1 + ...

�  ! x0
x3
, x1x3 , ...

x 20
x1x2
, x0x2 , ...

Represent 1st-order deformations ϕm : I0 ! S/I0
Homogeneous =) m 2 image

�
0! M ! ZΣ(1)

�
If base smooth: r = convhull (preimages)

TI0 (I ) = faces F of r s.t.*
m0 + t � ∑

m2F �
amϕm (m0) j m0 2 I0

+
� C[t]/ht2i 
 S

contains no monomial
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Example: Deformation co-complex of Pfa¢ an elliptic curve

dim �1 0 1 2 3 5
r� 1 15 45 50 20 1
TI0 (I )

� 0 0 0 5 5 1

4

0

x

x20
x2 x3

x0
x4

x2
x

x0
x1

x3
x1

x3
x4

1

x4

x23
x1 x0

x3
x2

x0
x2

x4
x3

x1
x3

x4
x0

x2
x0

x24
x1 x2

x2
x3

x0
x3

x22
x4 x0

x2
x1

4x
x1

x21
x3 x4

x1
x0

x3
x

x1
x2

x4
x2

hx1; x3; x0i

hx2; x3; x0i

 hx1; x3; x4i

hx1; x2; x4i

 hx2; x4; x0i

hx1; x2; x3; x4i

 hx1; x2; x4; x0i

 hx1; x2; x3; x0i

 hx1; x3; x4; x0i

hx2; x3; x4; x0i
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Topology of the special �ber tropical variety via limit map

The points of TI0 (I ) are vanishing orders of power series solutions of I in
the parameter t.

lim : TI0 (I ) ! StrataX0
F 7!

n
limt!0 a (t) j a 2 val�1 (relint (F ))

o
induces inclusion reversing bijection.
=) TI0 (I ) �= Sphere
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Induced resolution of the input degeneration

Birational Fano Ŷ = X (Σ̂)! Y such that

8F 2 TI0 (I ) 9σ 2 Σ̂ : F � σ
dim (σ) = dim (F ) + codimXt

=) lim bijection.
Satis�ed for c.i. in Gorenstein Y = P (∆) =) Σ̂ = NF (∆)

Hypersurface in Q-Gor Y : Σ̂ = Fan(∆��KY ).
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Mirror degeneration

Mirror degeneration with natural mirror map exchanging deformations and
divisors:
Y _ toric Fano given by Σ_ = Fan (r�), Cox ring S = C [yr j r 2 Σ_ (1)].

I_0 =
�

∏
r2J
yr j Q-Cartier,

S
r2J
r̂ � � TI0 (I )

�
I_0 = hy1y2y3y4, y5y6y7y8i

I_ =

*
m0 + t � ∑

m2(lim TI0 (I ))
�\N

am � ϕm(m0) j m0 2 I_0

+
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Applications

Recover the construction of Batyrev for hypersurfaces in Gorenstein toric
Fano varieties (re�exive polytopes)

r = ∆� ∆ = r�

 !

Recover the construction of Batyrev and Borisov for complete intersections
in Gorenstein toric Fano varieties (nef partitions).

r = r1 +r2 ∆ = ∆1 + ∆2

 !
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Applications

Pfa¢ an non-complete intersection mirrors0BBBB@
0 ty24 y1y2 �y5y6 ty23
�ty24 0 t (y5 � y6) y3 �y7
�y1y2 �t (y5 � y6) 0 �ty7 y4
y5y6 �y3 ty7 0 t (y1 + y2)
�ty23 y7 �y4 �t (y1 + y2) 0

1CCCCA
Hypersurfaces and complete intersections in Q-Gorenstein toric Fano
varieties
Stanley-Reisner examples

Combinatorial data obtained via tropical geometry has natural relations to:

Torus �brations
Tropical curve count (A-model)
GKZ hypergeometric systems (B-model)
Stringy E -functions (Hodge numbers)
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