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Abstract

These notes are the manuscript for two talks given in a seminar
on motivic integration. They try to explain the basics of motivic
integration, how to apply this to the problem of defining Batyrev s
stringy E-function for varieties with canonical singularities and how
the stringy E-function relates to the Hodge numbers of crepant resolu-
tions. As a corollary to the transformation rule of the motivic integral
we also prove, that birational Calabi-Yau have equal Hodge numbers.
Be aware, that these are rough notes written to prepare the talks.

Suggestions, comments and corrections are very much appreciated
(boehm@math.uni-sb.de).
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1 Introduction

Definition 1 A normal projective d-dimensional algebraic variety X is called
a Calabt Yau variety, if

e it has at worst Gorenstein canonical singularities.
o Kx=0x
e N'(X,0x)=0 for0<i<d.

Remark 2 The Hodge diamond of a smooth Calabi-Yau 3 fold has the form

1
0 0
0 R (X) 0
1 R2(X) 2 (X) 1
0 Bl (X)) 0
0 0
1

by Serre duality, Hodge duality and Kx = Q5% = Ox
H (X)~ H (X,0x) ~ H' (X,0%) ~ H)' (X)
So the Fuler number is
Y (X) =2 (A" (X) = b1 (X))
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There is a perfect pairing given by wedge product (non canonical)
Q; X Q%( — Qg( = OX

SO
Tx = Q%
hence H® (X, Tx) = H°(X,0%) and H' (X, Tx) = H' (X,0%) = H>' (X).

Definition 3 Two smooth Calabi-Yau d folds X and X* are called a topo-
logical mirror paair, if their Hodge numbers satisfy

hP9(X) = b P9 (X*) YO < p,q <d (1)

Remark 4 If X and X* form a topological mirror pair, then the Hodge
diamonds is mirror symmetric with respect to the diagonal.
Maurror symmetry interchanges the Hodge duality and Poincare duality.

Remark 5 Some background from Physics:
There are 5 different types of string theories. From the point of view of
Physics mirror symmetry of two Calabi- Yau 3-folds X and X* is the duality
of two of these types of string theories, defined on the product of a Minkowski
space and X resp. X*.

Example for duality in physics in the simplest case: Mazwell s equations
describing the electromagnetic interaction are invariant under the transfor-
mation

E — Bc?
B— —F

which shows, that the electrostatic theory for high interaction energies is
equivalent to magnetic theory for low interaction energies. In the case of
marror symmetry the duality allows the treatment of enumerative problems
i algebraic geometry.

In Physics the Euler number of X has an interpretation as the number of
generations of Fermions in the corresponding string theory:

1
Number of generations = 3 Ix (X)] = }hl’l (X) — h>! (X)|

In particular we see, that mirror symmetric string theories have the same
number of Fermion generations.



Example 6 Consider the family of quintic 3 folds X C P*. By adjunction
formula
Kx =0Ox

By Lefschetz Hyperplane Theorem we have
~ k=0,2
Hk(X,C)<—Hk(P4,<C):{ 0 k-1 }

hence as X is Kdihler we have h®' (X) = h%?(X) =0 and
R (X) =
From the Euler sequence and conormal sequence we get
ht?(X) =101
Since h' (X) = 1, for the mirror X* should hold
dim H' (X*,Tx) = dim H' (X*, Q%) = h*" (X*) =hr" (X) =1
hence in order to construct the mirror we have to look for a 1-parameter

famaly.
It turns out that the right choice is

X)\ = {[L’g + ZE? + CES + Zlfg + fEi + )\$0£B1$2£B3$4 = 0}

divided out by the Z2 action (ay, ..., as) (T : ... 1 x4) = (U*x0 © ... : p* ) with
W= e Resolving the singularities of this singular quotient without destroy-
ing the Calabi- Yau property gives the mirror.

In constructing mirror pairs we encounter several problems:

1. Even if we start with a manifold, we encounter singular varieties (see
quintic in P*).
First of all we know, that we can resolve the singularities by a sequence
of blowups:

Theorem 7 (Hironaka) Let X be a normal projective variety over an
algebraically closed field of characteristic 0. For any proper subvariety
D C X there exists a smooth projective variety Y and a birational
morphism f:Y — X s.t. f~1(D) is a divisor with only simple normal
crossings (and f is a composition of blowups in smooth closed centers).
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For a proof, and an algorithmic implementation of Hironaka s theorem
see [8].

. Of course we want the resolved variety to still be a Calabi-Yau:

Definition 8 A birational projective morphism f :Y — X with Y
smooth and X at worst Gorenstein canonical singularities is called
crepant desingularization of X if [*Kx = Ky.

If the crepant desingularizations of Y — X resp. Y* — X* exist, we
can define a topological mirror pair by

RP(Y) = h*P1(Y*) VO<p,g<d

However it is not obvious that this is well defined: If a crepant desingu-
larization exists, it is not necessarily unique. In particular, given two
crepant resolutions Y; — X and Y, — X it is not clear a priori, that
the Hodge numbers of Y; and Y5 are equal (we will prove that they are
indeed equal).

Example 9 Let Xy be a smooth Fano embedded by a very ample line
bundle L with LF = K)_{é (k,1 € N), let E = Ox, ® L and consider the
map
~HO(P(E),Op(5)(1))
f: Y=P(F) - XCPH"(X,0x, ®L))
mllo
Xo

which is the contraction of o (Xo) ~ Xo where o : Xqg — P(FE) is the
section of the P1-bundle P (E) corresponding to the natural embedding
Ox, — Ox, ® L. Hence X = C (Xy) is a cone over Xj.

We now calculate the discrepancy: m is the blowup of X in the singular
point of X with exceptional locus D = o (Xy) ~ Xo. So

Oy (D) |D: ND/Y =Lt

Write
Ky == W*KX X Oy (D)a

and restrict to D
Ky |p= Oy (D)* |p= L™



The adjunction formula yields

ES

L't =Kp=(Ky®Oy (D)) |p=L"®L " =L

soa:%—l.

Now consider the case of a smooth quadric Xy ~ P! x Pt C P3. Then
we can write X = S (1,1,0) as

X:{det(yo ?ﬂ):o}cﬂb4
Y1 Y3

so P=(0:0:0:1) is the singular point of X. The discrepancy is
Ky = W*KX + D

We now calculate a small and hence crepant resolution of X = C (X).
Let

E1 = Opl (2) D Opl (2) D Opl (1)
E2 = Opl (1) S% OPI (1) ® O]pl

The maps from P (Ey) = P (E») to P (H (P (E;), Op(s, (1)) = P(H° (P!, E))

give rise to a diagram
P (Oﬂml (2) D Opl (2) D Opl (1)) :> S (2, 2, 1) = }/jsmall
I
P(Opl (1)@0@1 (1)@0@1) — 5(1,1,0) =X

and hence to a morphism Ysmay — X, e.g. with

S(2,2,1) = {minors (2, ( Yo LT T )) = 0} c P’
Tr1 To9 T4 Ty X7

A morphism g : Yynan — X is given by

g(xo:..ix7) = (o271 :x3: 24 Tg)
and the exceptional locus is PL.
3. There are also C-Y varieties, which do not have crepant desingularizations.

Nevertheless we want to have a notion of mirror symmetry for these.
We will see some examples later.



First idea:
Define stringy Hodge numbers h%? (X) for singular varieties. The obvious
conditions they should satisfy are:

0. For smooth varieties they should coincide with the usual Hodge num-
bers.

1. If there exists a crepant desingularization Y — X, they should coincide
with the Hodge numbers of Y.

2. Even if there is no crepant desingularization we still want a notion of
mirror symmetry.

We will see that for the enlarged class of varieties we will be considering,
there in general is no notion of stringy Hodge numbers. But as there is a (not
nessecarily polynomial) generating function encoding equivalent information,
there is still a notion of mirror symmetry.

2 Mirror Symmetry and Stringy Hodge Num-
bers

Let X be an irreducible normal algebraic variety of dimension d over C.

2.1 The Hodge weight filtration and the £ Polynomial

The cohomology groups H* (X,Q) carry a natural mixed Hodge structure
[5], [6], which is given by the following data:
An increasing filtration

0=W_ CWyC..CWy=H"(XQ)
on H* (X,Q) called weight filtration, and an decreasing filtration
H* (X, C)=F'>F'>..DF'>Ft =0
on H* (X,C) = H* (X,Q) ® C called Hodge filtration. We then have

H" (H* (X,C)) = FPGrpH* (X,C) N FiGry H* (X, C)
where

GriH* (X,Q) :== (W,/Wi_y)
FPGrH* (X,C) :=Im (F"N (W, ® C) — GrH" (X,Q) ® C)



and the filtrations have the property that FPGrH* (X,C) gives a (pure)
Hodge structure of weight [ on GrH* (X, Q).
We therefore have a decomposition

H*(X,C) = @ HP (H* (X,C))

In [4] one can find a proof, that also the cohomology with compact support
H!(X,Q) admits a mixed Hodge structure.

Definition 10 The E-polynomial E (X;u,v) € Q[u,v] (coefficients in Z)
of a complex normal algebraic variety X of dimension d is then defined as

E (X;u,v) Z Z hpq H (X)) uPv* (2)

0<p,q<d 0<i<2d

So we have a map from the category of normal algebraic varieties V¢ to
Qu, v] by
E:obVe — Qlu,v], X — E(X;u,v)

associating to each X its E polynomial.
Important properties of the £ polynomial:
Proposition 11 Let X and X; complex normal algebraic variety.
1. If X = |, X; is stratified by a disjoint union of locally closed sub-

varieties then
S WLt

E(X)x X5) = E (X)) E(X,)

3. If X — B is a locally trivial fibration and F the fiber over the closed
point then
E(X)=E(F)-E(B)

A proof can be found in the previously mentioned paper by Danilov
and Khovanskii. Note that the number of Fi-points of a variety has sim-
ilar properties as FE.



Remark 12 For smooth compact X of dimension d

E(X;u,v) = > " (X)u” (3)

0<p,q<d
with h*9 (X)) = dimHg’q (X) = dim H9 (X, Q%).
e Hodge duality for X is equivalent to

E(X;u,v) = E(X;v,u)

e Poincare duality for X is equivalent to
E(X;u,v) = (uv)dE (X;u_l,v_l)
o Mirror symmetry for 2 varieties X and X* is equivalent to
E(X;u,v) =u'E (X*;u_l,v)

Remark 13 Consider a stratification X = U U C with X and C' compact.
The long exact sequence for cohomology with compact support reads as

L= HEU) S B (X) S Y (0) S B (U) — ..

where @y 1s given by continuation by 0, Yy is given by restriction and the
boundary map 0y is giwen by w — d (- r*w) where r is the retract of a
tubular neighborhood of C and 3 is a bump function on this neighborhood.

Example 14 For X =P!, U = C and C = {pt} we have

k=|Hi(C) — H"P) — H*(pt)
2 UV uUv 0
1 0 0 0
0 0 1 1

where we denote the Hodge filtration by the corresponding EE monomials. The
E-polynomials are

F(C=w EMP)Y=14w E([pt)=1

Remark: The long exact sequence decomposes in short ones if all varieties
only have even cohomology.



For X =13, C an elliptic curve and U = P? — C' we have

k=|H:(U) — HP) — H*(C)
6 (uv)® (uv)” 0

5 0 0 0

4 (uv)? (uv)? 0

3 0 0 0

2 U+ uv uv

1 0 0 —u—v
0 0 1 1

The E-polynomials are
E(U)=u+v+ (w)’ + (uw)’ E(P?) =1+uww+ (w)’+ (w)’ E(C)=1—u—v+uw

So a shift in the cohomological weight occurs (Note also the sign of the u+ v
term).

Example 15 (continued) The corresponding Hodge filtration for the cohomology

of U:
k=0 GT’lHk
=10
[P |
0=W_, CcWy,=H(UQ)
k=2 GTlHk
I=]0 1 2 3 4
R R
u
v
0=W_ =WoCcW,=..=W,=H*(U,Q)
k=4 GTlHk
I=|0 1 2 3 4 5 6 7 8
Fo| By | Fy | By | Fy
(uv)?
0=W_=.=WsCW,=..=Ws=H"(U,Q)

similar for k= 6.
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Example 16 We continue our example (9) of the cone over the quadric
calculating the E-functions:

The cohomology ring H* (X,) of Xo is generated by h; = pricy (PY), i =
1,2 and hence 1, hq, ho, hihs is a basis as a vector space, so

E (Xo) = 14 2uv + (w)?

which agrees with the product formula E (Xo) = E (PY)* = (1 + uv)®.

H*(Y) is a free module over H* (Xg) with basis 1,¢ = ¢, (Oy (1)) and
hence 1, ¢, hy, ha, chy, che, hihg, chihs is a vector space basis (where h; is short
for m*h;), so

E(Y) =14 3uv+ 3 (uw)” + ()’

H* (Yiman) is a free module over H* (PY) with basis 1,c,c¢* with ¢ =
c1 Oy, (1)) and hence 1, h, ¢, ¢?, ch, he? is a vector space basis (h = 7*cy (P1)),
0

E (Ysman) =1+ 2uv + 2 (uv)2 + (uv)3

So the E polynomials
E(Y\Xo) = E(Y) - E(Xo) =
= ww + 2 (w)® + (uwv)®
E (Ysma”\IP’l) = F (Ysmau) (Pl) (1 + 2uv + 2 (wv)® + (uv)?’) — (14 ww)
= uv + 2 (w)* + (w)®

(1+ 3uv + 3 (wv)® + (wv)?) — (1 + 2w + (wv)?)

agree as expected because of Y\Xo = X\P = Y, na\P'. By this we can also
calculate
E(X)=14uv+2(uww)+ (w)®

2.2 Varieties with Canonical Singularities

Definition 17 A normal projective variety X is said to have at worst canonical
singularities if

o X is Q-Gorenstein, equivalently Kx € Div(X)® Q

e [For a resolution of singularities f : Y — X s.t. the exceptional locus of
fis a divisor E whose irreducible components D+, ..., D, are smooth di-
visors with only simple normal crossings and Ky = f*Kx+Y_:_, a;D;,
we have

a; > 0 for allt

(the discrepancy divisor is effective).
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2.3 The Stringy E-Function

From now on we consider a normal projective d dimensional variety X with
at worst Gorenstein canonical singularities, f : Y — X a resolution of singu-
larities with Dy, ..., D, the smooth components of the exceptional locus with
only simple normal crossings.

Let I ={1,...,r} and set for any J C I

D;=Yn()D;
J€J

D5=D,\ | D
eI\J

This gives a stratification Dy = U, ;c o D5

Definition 18 We define the stringy E-function Es of X as

Eq (X;u,v) = ZE (D55 u,v) Huv——l (4)

1
JCI jed (w0)¥™ —1

Remark 19 If X is Gorenstein, then the a; € Z>o and hence Eg (X;u,v) €
Z[[u,v]] NQ (u,v). Eg (X;u,v) is not a rational function in general.

Now we will state the main theorem, assuring that Fg (X;u,v) is well
defined. We will prove this theorem by motivic integration:

Theorem 20 Eg (X;u,v) does not depend on the resolution f:Y — X, in
particular Eg (X;u,v) is well defined.

As a direct Corollary, we have:
Corollary 21 If X is smooth Eg (X;u,v) = E(X;u,v).

Remark 22 Let’s first make an easy observation: Eg is not affected by the
blowup f:Y — X of a point P in smooth X : The exceptional locus of f is
Dy = P! and the discrepancy is

Ky = f*Kx+ (d—1)D,
—1

(uv)a1+1 1

:E(Y\D1)+<1+uv+ -+ (uv) )

Eq(X) = EX\Dy) + E(Dy) = E(Y\Dy) + E (P")

(w)® — 1
uy — 1

= E(Y\Dy) +1=E(X)
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The idea of the proof of (20) is the following:
The universality of the map [—] from the category of complex algebraic

to the Grothendieck ring gives a factorization of E : 0bV¢ — Q [u, v] through
the Grothendieck ring M

Ve 5 Q [u, v]

=1\ B
M

The goal is to write
uv — 1
StXU’U EDT},U'U T:E</ FDd/J,Ld)

for a suitable function Fp associated to the discrepancy divisor (J (Y) the
bundle of formal arcs on Y), after extending E to Ky (Vc)[L™!] (where
L =][C]) and to an appropriate completion. The transformation rule then
gives, that the motivic integral does not depend on the resolution.

2.4 Stringy Hodge numbers

In order to prove Poincare Duality we need the following lemma, which proves
useful also in a more general sense:

Lemma 23 Forall J C 1

E(Dyuv)= Y. (~)VE (D0, 0)
J' with JCJ'
SO 1
uv —
Eq (X;u,v) = ZEDJJJUH( T —1)
JCI jeJ (uv)™ 1

Instead of proving this (easy) we will illustrate it in an example:
Example 24 [ ={1,2} and a; =1, ay =1 and D, N Dy = {P}:
Stratification by D:
= (Y\ (D1 U Dy)) U(D\{P}) U (D\{P})U{P}
The first formula reads:
E(Dg) = E(Y\(D1UDy)) = E(Y) = E(Dy) — E(D2) + E(P)

E (D) = E(D,\P) = E(D;) — E (P)
E( fl,z}):E(P):E(P)

13



By this

uv — 1
By (X;u,v) = EDjuv) || —— =
JZC] E(uv)ﬁ—l

=(E(Y)—=E(D) - E(D:) + E(P))

+ (B (D)~ B(P) —— + (B (Dy) ~ B(P)) ——
1
TEP) (uv 4 1)°
— E(Y)

00 (1) 5100 ()

L E(P)—2E(P) w+1+E<p)—(W1H)2

Theorem 25 (Poincare Duality) FEg (X;u,v) has the following properties:

Eq (X;u,v) = (uv)dESt (X;u’l,zfl)
Ey (X;0,0)=1

Proof. From the Lemma (23) we have

By (X;u,v) = ZEDLuUH((wl;Sj%—l) (5)

JCI jeJ
aj+1
uv — (uv
:ZE(DJ;U,U)H<_ a(j+1) 1)
Jci jeJ (wv) -

We can check duality for each term separately: Poincare Duality holds for
each closed D

(w) 1 B (Dyyu=',07") = E(Dy;u,v)

ww — (uww)“ (u)V” - —
H ( (uv)ajH > H ( a]—l 1 )

jeJ

and

Substituting © = v = 0 in the equahty 5) yields

Ey(X;0,0)=) E DJ,00H< )—E(Y;0,0)

Jcl jeJ
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Definition 26 If E is a polynomial, then deg (E) = 2d. We then define the
stringy Hodge numbers of X as

W (X) = (=1)"" coe [ f (Eg, u"v")

So A% (X) = 0 outside the Hodge diamond and r%° (X) = %% (X) = 1.

2.5 Crepant Resolutions and Mirror Symmetry

Theorem 27 If X admits a crepant resolution f 1Y — X then Eg (X;u,v) =
E (Y;u,v).

Proof. By Hironaka’s theorem there is a smooth Z and a birational
morphism g : Z — Y, s.t. f o g is a resolution of singularities of X and
the exceptional locus has normal crossing irreducible components D1, ..., D’,.
Let D1, ..., D, be the irreducible normal crossing components of g. Write the
discrepancy loci as

Kz =g Ky + Z a; D;
i1

and for fog as

Kz =g ['Kx+)Y_aD;
i=1

By f*Kx = Ky we have

r r/
=1

=1

Denote the supports of the exceptional loci of f o g and f by supp D and
supp D'. Clearly supp D C supp D', so if D} C supp D'\ supp D then a, = 0.

So computing Fg (Y) from f and Eg (X) from f o g gives the same
formula, since terms with a; = 0 don’t contribute. Hence

EY)=E4(Y)=FEy(X)
since Y is smooth.
Remark 28 In particular Ey (X;u,v) is polynomial and hence the stringy

Hodge numbers of X exist. FEquivalently, if Eg (X;u,v) is not polynomial,
then X admits no crepant resolution.
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Definition 29 Two Calabi- Yau varieties X and X* are called topological
marror pair, if their stringy E functions satisfy

By (X;u,v) =u'Ey (X*; u v)

Remark 30 This is well defined even in the case, when Eg is not polyno-
maal. If a crepant resolution exists, the notion of a stringy topological mirror
pair coincides with the previous definition.

Example 31 Now we return to the example (9) and (16) from above: Xy C
P? o smooth quadric and

f:P(OXo (1)@0){0) :Y—>X:C(X0)

with discrepancy divisor Dy ~ Xj.
For d =3 we had X = S (1,1,0), we computed a small resolution

S (27 27 1) = Yomar — X

and calculated

E Yaman) = 1 + 2uv + 2 (wv)” + (w)?

)

E(Y)=1+3uw+3(uw)’+ (w)®
E (D)) =1+ 2uv + (w)?

E(Y\D;) = uv + 2 (w)* + (uv)?

So the stringy E function Eg is

Eq(X) = E(D§)+ E (D3y) (::)% — E(Y\D)) + E (D) uvi -

= (uwv +2 (uv)® + (uv)g) + (1 + uv)®

uv + 1
=14 2uv+2 (UU)2 + (U'U)S =F (Ysmall)

and, as predicted by the theorem (27), the stringy Hodge Numbers of X indeed
coincide with the Hodge numbers of the small resolution.

Exercise 32 Show that in the preceding example Eg is not a polynomial for
d >3 (in particular X does not admit a crepant resolution).
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3 Motivic Integration

In the following let Y be a algebraic complex manifold of dimension d.

3.1 Overview

Our to goal is to prove the theorem (20) (in the case of X Gorenstein). Short
overview of the objects involved in the proof:

e The main part of the proof will take place on the smooth variety Y.
The necessary data is the discrepancy divisor on D on Y, but this can
also be any other effective divisor with simple normal crossings.

e We will use the following objects:

— The bundle J, (V) of formal arcs in Y. Think of the fiber over y €
Y as all formal curves in Y through y i.e. power series expansions
in one variable in Y.

— A function Fp : J (Y) — Zso U {oo} associating to each v, €
Jo (Y) its intersection multiplicity with D, encoding all the infor-
mation about D.

— The Grothendieck ring M of isomorphy classes of algebraic varieties.

— A measure y on cylinder sets in J, (V) taking values in M [L7}]
where L denotes the class of C.

— The level sets Fj,* (s), which will turn out to be cylinder sets for
finite s.

— A completion R of M [L7!] and an extended measure taking values
in R. We will need this, because the level set F5' (c0) is not a
cylinder set.

— The motivic integral
/ L~ Pdy = Z w(Fpt(s)) L~
o (Y) SEZL>oU{0}
which we will compute explicitly.

e The universality of the map [—] from the category of complex algebraic
varieties to the Grothendieck ring gives a factorization of £ : V¢ —
Q [u, v] through the Grothendieck ring

Ve - Q [u, v]
=1\ /' E
M
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which extends to R. It turns out that the whole theory is constructed
in a way that

Ey (X;u,v)=F (/ FDduLd)
Joo(Y)

and that the motivic integral for the discrepancy divisor does not de-
pend on the choice of the resolution, because of the transformation
rule.

e As a corollary to the transformation rule we will also prove, that bira-
tional smooth Calabi-Yau have the same Hodge numbers.

3.2 The bundle of formal arcs

Definition 33 Lety €Y.
A k-jet over y is a morphism

vy 1 SpecC 2] [ (M) =Y
with vy, (SpecC) =y

(Note that SpecC [z] / (z*™) has only one element, which is the ideal (2),
and this corresponds to SpecC). In local coordinates of Y think of a k-jet as
a d-tuple of polynomials of degree k whose constant terms are zero.

A formal arc over y is a morphism

Yy SpecCl[z]] =Y
with 7, (SpecC) =y

In local coordinates of X a formal arc is a d-tuple of power series whose
constant terms are zero.

We can build bundles Ji, (Y) — Y and J (Y') — Y with fibers (J; (Y)), =
{k-jets of Y over ytand (Jw (Y)), = {formal arcs of Y over y} over y.

Example 34 First explore this in the case Y = A? = Spec (C [x1, ...., 14]).
We have to consider the ring homomorphisms

Clz1, .oy zg] = Cl2] [ (ZF11)
which are given by classes of polynomials
T — Qo+ apnZ + ... + appz"
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so Ji (Y) is parametrized by the coefficients a;; i =1,...,d, j =0, ...,k hence
Jk (Y) ~ Ad(k’-i—l)

(Remark: In general J, (Y) is a bundle. Here a factor A corresponds to the
base. ).

One can show that this stays true if Y is smooth.

Let y € Y =V (f1,.... fs) C A" and d = dimY. Because Y is smooth
after a change of coordinates we can by the implicit function theorem for
power series find unique power series

Ydt1s - Yn € (X1, ooy Tq) - Cllz1, .0y 24]]

S.t.
fi(x1, ooy Tay Yasa, - yn) =0 foralli=1,.. s
and (21, ..., Ta, Yar1 (X1, -, Ta) ooy Yn (T1, ..., T4)) parametrizes Y in some open

set in a topology, where the implicit function theorem holds. Now specifying
power series X1, ..., Xg € C[[z]] is the same as specifying an arc in Y

X1 = X1 (2)

Xd = Xl (Z)
Xd+1 = Yd+1 (Xl (2) s ...,Xd (Z))

X, =Y, (X1(2),....X4(2))

This stays of course also true for any truncation of the power series to
Clz] / (**1).

So the coefficients of the X; give the locally trivial bundle structure of
Ji (Y) over an open set in the etale topology (where the implicit function
theorem holds). Then one has to show, that this induces a locally trivial
bundle structure in the Zariski topology.

Proposition 35 LetY be smooth of dimension d. There are bundles Ji, (Y) —
Y resp. Joo (Y) — Y with fibers over y the k-jets resp. arcs of Y over y.

Ji (V) is an A*? bundle over Y, in particular it is smooth (this is no
longer true if Y is not smooth, as the fiber dimension may jump).

Jo (Y) is an A1 bundle over Jy, (Y) for s > 7.
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For each k the natural truncation C [[2]] — C[z] / (z**1) induces a bundle
map
T Joo (V) — Ji (V)

which is surjective, because every v, € Ji (Y) can be lifted to J (V).
Simalarly the truncation induces surjective bundle maps

okt Js (V) = Ji (V)
for s > k.
The standard proof goes as follows: Define the Ji (Y) as schemes, show:
Lemma 36 If Z — Y is etale, then J, (Z) = Jp (Y) Xy Z

So since a smooth Y is locally etale over A™ in the Zariski topology, we
get the assertion.

Remark 37 e The k-valued points of Jy, (Y) are the C 2] / (zFT') valued
points of Y.

L4 Jo(Y)gy

o Ji(Y) =Ty is the tangent bundle. In general we can describe Ji (Y)
by k-th. order derivations.

o The inverse limit of the Ji (Y) is Joo (V) = lim Ji, (V).

3.3 Constructible sets

Definition 38 A subset of a variety is called constructible, if it is a fi-
nite disjoint union of locally closed subvarieties (with respect to the Zariski
topology).

A subset C C Ju (Y) is called a cylinder set, if C = m,' (By) with
By, C Jix (Y) constructible. By is called k-basis of C'.

Remark 39 If m; (C) is a k-basis for C, then for all s > k
s (C) = moy (mi (C))

is the s-base of C, i.e. s (C) is constructible and C = 71w, (C).
Finite unions and intersections and complements of cylinder sets are
cylinder sets.

Proof. Easy exercise, e.g. for the union of two cylinder sets: Let C' =
7, " (By) with By C Ji (Y) and C" = 7! (B) with B, C J, (Y)) and suppose
k < s. Then with By := 7Ts_,1 (Bi) we have C' = 7,1 (B,) and C UC" =
7, (Bs U BY).
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3.4 The function Fp encoding the information of D
In the following let D = >"7_, a;D; be an effective divisor on Y and I =

{1,...,r}.

Definition 40 Fory € Y a point and g a local equation of D in a neighbor-
hood U of y. For an arc vy, over y we call

Yy - D = vanishing order of g (v, (2)) at z=0
the intersection number of v, and D. Let Fp be the function
FD : Joo (Y) — ZZQ U {OO}
Yy =y D

The goal is to integrate Fp : Joo (Y) — Zso U {o0}, 7y — 7, - D over
Jso (Y). In order to do this we will show, that the level sets are cylinder sets
and compute p (F ot (s)) with respect to some measure .

3.5 Local description of the level sets of F)p

With the same notation as in the case of D being an exceptional locus, write
for any J C I

Dy =Y NNy Di D5 =D\ Uien, Di

The partition Y = |J D9 induces a partition
JcI

T (V) = s (D3)

JcIl

So we can produce a partition of any subset of J, (Y') by intersecting with
the 7, (D9).
We will do this for the level sets Fj,* (s) by the following construction.

Remark 41 It holds

T

FD :ZaiFDi

=1

hence for v, € Jx (Y) we have Fp (y,) = Y., a;Fp, (7,) and for the
terms of the sum the following holds:
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Remark 42 For vy, € J (Y)
Fp, (w) =0y ¢ D

Combining both and writing s = Fp (7,), m; = Fp, (7,) it holds >\, a;m; =
s and

(m;>0eje)e (ye(|Djandy¢ (| D))< ye D]
jedJ JeINJ

So with the

Definition 43 For J C I and s € Z>g

M= {(ml, womy) €25y | aymy + ... +aym, = s and my >0 j € J}
we proved 7, € w5 ' (D) N Fp' (s) & (Fp, () s Fp, (7)) € M, that is:

Proposition 44 For each J C I it holds

D0 Ey ()= | () Fol (mi) (©)

meM, 4 i€l
and hence for each s € Z>g
e -U U (N o) M
JCImeMy, \iel
is a finite partition of the level set Fy,* (s).
Example 45 We describe this in an example:
D =D+ D,
with Dy N Dy = {P}. Set for J

My = {(m1,ms) €Z%, | mi+my=s and m; >0 j — J}
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which gives an partition of ZQZO:

So

|

Hence in this case

Fpl(s)= |J  Fpl (m)n Fp) (mo)
mi1+ms=s
m1,mz2>0

Remark 46 (Local description of the level sets) Let D = >, a;D;
be an effective, normal crossing divisor. There is a finite covering of Y
by coordinate charts U — V C C¢, s.t. D is given in the chart by the equa-
tion 2{* - ... - zbby = 0 with ay,...,ap, > 1 and 0 < b, < d (without loss of
generality). Forse Z>o and (my,...,m,) € M, write

,,,,, = () Fp! (mi) Ny (U)

el

e [f J is not contained in the set of variables appearing in the local equa-

tion of D i.e. J ¢ {1,...,b,}, then UN DS =0 hence
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o Otherwise i.e. if J C {1,...,b,},

we can describe (¢, Fl_h-l (mi) N7yt (U) (i.e. power series with vanish-
ing order m;.on D;) as the preimage by 7 of the power series truncated
to degree

k =max{my,...m, | j=1,...,r}

So we get d — |J| power series with vanishing constant term

eC eC
0+ ()24 ... +(.)2F

and |J| power series of the form

eCr eC eC
0+ ... +0+(.)2™ 4+ ()™ 4 ()2F

and conclude with (6)
U = (U 71D5) 5 CHOD s (€)1 @2k (g)

=it (001 D5) x €S (1))

Example 47 For U = C? and D = D, + D, given by 2120 =0, P =0 € C?

we have
Fpl(my) N Fp) (me) Nyt (U) ~
J = @ (ml, m2> = (O, 0) T (CQ\ (Dl U Dg))
J={1}  (mi,mz2) = (m1,0) Ty (DI {P}) x C™ x C*)
J={1,2} (mi,my),my>my>1 7,1 ({P}xCm ™ x (C*)Q)

With the remark (46) about the local description of the level sets it easily
follows:

Proposition 48 (Finite level sets are cylinder sets) For a normal cross-
ing effective divisor D the level set Fy,' (s) is a cylinder set for all s € Zx.
Fp' (00) is a countable intersection of cylinder sets.

Proof. By (8) N;c; Fip, (mi) Ny (U) is a cylinder set and hence also
Micr Fip,| (m;) as a finite union of cylinder sets and so by (7) also Fj,' (s)
again as a finite union of cylinder sets is a cylinder set.

For the infinity level set F5' (c0), we remark that

Fp'(00) = (] m'me (Fp' (20))
kGZZO
We only have to check this for each D; and here it holds because a power

series is 0 if and only if all truncations to any order are 0.
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3.6 The Grothendieck ring and the measure for cylin-
der sets in J (V)

Definition 49 The Grothendieck ring of complex algebraic varieties
M is the free abelian group of isomorphism classes of complex algebraic
varieties modulo the subgroup generated by [X| — [V] — [X — V] for closed
subsets V- C X, with a ring structure given by

[X]-[X] = [X x XT]
We call the neutral element [point] =: 1 and [C] =: L.
(So [C*]=L-1).

Remark 50 Let f : X — B be a locally trivial fibration (with respect to
Zariski topology) of complex algebraic varieties and F' the fiber of f over a
closed point, then

Proof. There is a finite open covering {U;} of B s.t. X is trivial over U;.
By induction on the number of U; we only need to prove this for a covering
U; UU,: We then have f~!(U;) ~ F x U; so

[fH ()] = [F]- U]
and as B\U; C U, we also have f~! (B\U;) ~ F x (B\U;)
[fH(B\Uh)] = [F] - [B\U1] = [F] - ([B] — [U7])

where the last equation holds because B\Uj is closed. Since f~!(B\U) is
closed in X we get

(XT= [ O] + [f 1 (B\U)] = [F] - ([th] + [B] = [th]) = [F] - [B]

Definition 51 For a cylinder set C = 7' (By) with By C Ji (Y) we define
an additive measure

1 : {cylinder sets} — M [L7'] 9)
H(C) = (B - L0+
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Proof. i is well defined: Let s > k and C' = 7' (By) a cylinder. Then
with By := 7 (By) we have C' = m;! (B;). As the fibers of 7, are Cd(s=k)
by the remark about locally trivial fibrations we have [B,] = [(Cd'(sfk) X Bk]

hence
[Bs] . L*d(S‘i’l) — ]Ld(sfk) . [Bk] i ]Lfd(s+l) — [Bk] . ]Lfd(k+1)

A similar argument proves the additivity.

By this definition we can compute the measure of the level sets Fy! (s)
for s € Zsg, but not of F' (c0). Hence we will have to define an additive
measure with values in a completion R of M s.t. it is compatible with u and
F5' (00) has measure 0. We will denote the new measure again by p.

3.7 Measure of the level sets

Proposition 52 (Measure of the level sets) Fors € Zsq the measure of
the level sets Fr,' (s) of Fp is

SO =Y S D3 LB oL

JcI mGMJ,S

Proof. As above we cover Y by coordinate charts U; — V C C?%, s.t. D
is given in each chart by an equation 2{* - . zb = 0. Then for s € Z>, and
(ma,...,my) € My,

ﬂF ml Ny (U]) _ 7Tk_1 <(U] N D;) « Cdk—Ejeij % (C*)U‘>

iel
or empty. So
mF =, ' (C) with
iel

€] = [D3 x CHRaesmi s (€)Y = [D5] - L Raerm - (L - 1)
hence

2 (ﬂ FB} (mz>> = [D(}] LT Xges ™ (L — 1>|J| L

el

and with the disjoint partition (7) the claim follows.

Example 53 In the previous example D = Dy + Dy (i.e. a1 = ay = 1) with
Dy N Dy={P} and I ={1,2}. So

p(Fp'(0)) =L~ [Y\ (D UD,)]
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and for s > 1:

w(Fp'(s) =L~ (

[D\P]- L™ (L—1) + (s—1)-[P]-L™-(L—-1* + [D)\P]-L™°-(L—1))

corresponding to the diagonals in the picture

<
:?;/....

3.8 The completion of M []L_l} and calculation of the
motivic integral

Remark 54 The map [—] : obVec — M is the universal map being additive
on disjoint unions of constructible sets and multiplicative on products, so any
other map E : obVe — R with the same properties factors through [—|. So

the universality of [—] gives a factorization of E : Ve — Q[u,v] through the
Grothendieck ring
Ve - Q [u, v]
=1\ /' E
M
(which we will also denominate by E), so E (L) = E([C]) = E(C) = wwv.
E can be extended by E (L) := (ww)™" to a map

E: ML - QJu,v, (uv)_l}

Remark 55 Let’s first do the calculations to see the critical steps and then
give the completion R, where these calculations are well defined:

Our goal 1s to write the following expression (which in the case of resolu-
tions of singularities is the stringy E-function Eg) as

ZE<D3;U»U>H(W$—;1_1 =k (Z[Df}]n%)

JcI jeJ JcI jeJ
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and then express the argument of E as an integral by
- — —s o L—1 —
/ ]L FDd/L = Z M(FDI(S>)L :Z[DJ]HWL d
oo (Y) €75 0U{oo} Jci jeJ
Check this calculation, using Proprosition (52):

AML%F S u(Fy () L (10)

SE€L>oU{oo}

— Z Z Z [Dz].L_Zjeij.(L_]_)I‘”.L_d.L_S

SGZZO JcI mEMJ,S

N Z Z Z (D3] (L — 1)“‘ L Xses(ei+)my 4

SGZEO JCI mGMJ’S

S s 5 ([

JcI $€ZLsomEMy s \jEJ

— (D3] - (L — . H Z 1, -(a+0m; | p,—d

Jci J€J \m;=1
1

_ o 7] —d
- [DJ](]L_]'> 'HLajJrl_l']L’

Jcl jeJ

o (]L - 1) —d

=2 i lyem—7 L

JciI jed

So we want to define a measure for a countable union of disjoint cylinder
sets by

v U= ne)

jGZZO jEZZO

but countable sums are not defined in M [L™!] so we have to pass to some
completion and also have to show, that the limit does not depend on the
order of summation.

Definition 56 We consider the completion R of M [L™Y] with respect to the
filtration

F"=F"M[L™ =([VIL™7 | j >dimV +m) formeZ
(so F™T C F™) and denote the completion map by
¢p: M[L7'] - R
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The completion behaves somehow analogous to formal Laurent series.

Remark 57 The completion is constructed in the following way: For a, €
M LY we define

lima,=0 < Ve€Z dngeN:a, € F° VYn>ng

n—o0o

and
a, s a Cauchy sequence < Ve dng:a, —a, € F° Yn,m > ng

Two Cauchy sequences a,, and b, are called equivalent, if a, — b, is a null
sequence (i.e. lim, o a, — b, = 0) and the set of equivalence classes is the
completion R. We have a well defined addition on R by (a,)+(bn) = (an + by)
and multiplication (a,) - (by) = (a, - by).

The completion map ¢ (a) = (a) sending a to the constant sequence (a)
1 a ring homomorphism.

By definition a sequence (a,) C M [L™'] converges with limit value in R
iff it 1s a Cauchy sequence. The limit value is the sequence by itself.

For all e1,e9 € Z

e e o Feite2

Let ’s first check that (a, + b,) and (a,, - b,) are well defined:

e If a, is a Cauchy sequence then a, is bounded i.e. de € Z s.t. a, € F*
Vn € N:
Ing 1 an — ap, € F° Y0 > ng and ey st ag,...,a,, € F' then
a, € Frirf0et vy > pn,.

e For all £1,e5 € Z we have Fe1 . 52 C Feitez;
Let C) € F' and Cy € F*2, ie. C; = [V;] - L7 with j; > dimV; + ¢;
so Cp - Cy = [V} x Vo] - L™ and

J=h+j>dimV; +dim Vo4 ey + e =dim (V) x Vi) + 1 + &9

hence C - Cy € Fe1te2,

e If a, and b, are Cauchy sequences then (a,, + b,) and (a,, - b,) are again
Cauchy sequences:

Ve dng:a,—a, € F¢ Vn,m > ng and equally n; for b,. Then for
the sum

cFke cFe
'\ 7\

~

an+by— (A + b)) = Ean - amj—,(bn —by) € F° VYn,m > N =max{ng,ni}
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For the product choose a fixed &1 s.t. a,, b, € F*'Vn. Then

€Fe €Fe
S e N %
Unbp—0mbp = @y (b — b))+ Gy (@ — ap) € FET ¥n,m > N = max {ng, n1}

Remark: Be aware that the £; can be negative. By choosing N big
enough we can absorb the ¢;.

If ¢,, and d,, are null sequences, then ¢, + d,, is a null sequence.

Ve dng:c, € F¢ and 9n; : d,, € F¢. Then ¢, +d,, € F*Vn > N =
max {ng,n1} and ¢, - d, € F?** C F* Vn > N = max {ng, n1 }.

If a,, is a Cauchy sequence and ¢, is a null sequence then a,c, is a null
sequence:

Jey s.t. a, € Ft Vn. SoVe dng: ¢, € F° hence a,c, € F*!.

e If a,, b, are Cauchy sequences and c¢,, d, null sequences, then

is null sequence

(an + ¢n) + (bp + dp) = (an +b,) + (cn +dy)

is null sequence

(an + Cn) . (bn + dn) = anbn + ,cnbn + andn + Cndr:

Remark 58 For sequences ay,b, € M L™ it holds:

1.

2.

lim, wa, =0 < > a, convergent.

If Y0, ay is convergent and o : N — N bijective, then Y| Go(n) 18
convergent and has the same limit value.

8. If Y an and Y7 b, are convergent, then

1.

(g an> : (g bn> = i > anbm

s=1 n+m=s

Ve 3dng:a, € F° Vnanstof:maneFE Vni,me > ng as F© is

a group, hence the partial sum is a Cauchy sequence.
On the other hand if Ve € Z 3Ing e N: > "2  a, € F* Vny,ny > ng

n=ni
then in particular for ny = ny = ng we have a,, € F*.
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2. Cauchy sequence + null sequence is a Cauchy sequence. So we have to
show, that this series differs from the first one only by a null sequence:
Ve dng : a, € F° VYN > ng. Take ny sit. {0(0),...,0(n1)} D
{0,1,...,n9 — 1}. Then

€F* cFe
“ 7S N~
m no—1 m
Zao‘(n) - Zan_ Z a, € F* for all m > ny
n=1 n=1 n=ng

so the difference is indeed a null sequence.
3. Ve 3dng:a, € F¢ VYn > ngy and similar n; for (b,). Hence

N N N
Dy = (Z an> . (Z bn> —Z Z anb, = Z anb, € F* VYN > max{ng,n;}
n=1 n=1

s=1 n+m=s n,m<N
n+m>N

so limy_,, Dy = O1i.e. the two sequences only differ by a null sequence.

Definition 59 So we can define a measure on

U C; | C; disjoint cylinder sets with j (Cj) — 0 for j — oo

J€Z>¢o

p UCj = > w(C)eR

jEZzO jGZzO

In the completion R the limit exists (because pu(C;) is a null sequence) and
it is independent of the order of summation.

Definition 60 The motivic integral of the effective normal crossing divi-
sor D on the complex manifold Y is defined as:

/ FDdu::/ L~ "dp:= > p(Fp'(s) L
Joo(Y) Joo(Y)

SEL>oU{o0}

Proposition 61 If D is an effective normal crossing divisor then Fp is mea-
surable.
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Proof. We will see later, that u (F,51 (oo)) = 0, so we only have to show,
that p (Fp' (s)) - L™ is a null sequence. Actually even p (Fj,' (s)) is a null
sequence:

K (F51 (5)) = Z Z [DY] LT Zea™i (L — 1)|J| L

JcI meMJ,s

Forall J C I and m € My,
dim ([D;] (L - 1)“‘) —d—|J|+]|]]=d

hence

([D?I] (L - 1)”‘) L Xsermi—d ¢ plljegmitd—d _ @) e my

So pu (Fp" (s)) is a null sequence, because Y jcsmj —ooass—o0if D#0
and if D = 0 then

[Y]- L= for s=0

K (FBI (S)) - { 0 else }
Now our claim follows with:
Lemma 62 1 (F}," (c0)) = 0.
Proof. Omitted.

Theorem 63 The motivic integral then evaluates as
L-1
—F o o —d
/ L™"%du =) D3] | g
Joo(Y) Jcl jeJ

i particular
/ L~foduy =[y]- L™
Joo(Y)

So the motivic integral takes values in the subring

o)
L7 -1 jEN

where we should think of (L7 — 1)71 as the corresponding power series ex-
pansion.

CR

R =¢ (ML)
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Remark 64 Omitting the IL.™° factor in the sum leads to

> n(Ft ) =X DL =L = [ L

s€Z>oU{c0} Jci Joo (V)

for any effective normal crossing divisor D # 0 (see calculation (10)). Of
course the left hand side is 1 (Jx (Y)) and the right hand side can be inter-

preted as fJoo(Y) ldpu.
Proposition 65 The map
E: ML - QJu,v, (uv)_l}

can be uniquely extended to a map

E:R —Q [U7U7 (uv) ™", {(UU)+—1}]‘6N]

byE( 1 ): 1

Li—1 (wv)’—1°

Proof. The kernel of the completion map
kerg = () F™
meZ

is annihilated by E: For a € F™ it holds deg £ (a) < —2m, so for a €
ker ¢, we have deg E (a) = —oo i.e. E(a) = 0. Hence E factors through

¢ (ML™']). Remark: It is unknown, whether ker ¢ = 0.
So by the previous calculation (10):

Remark 66 We have

o w—1 o L-1 B _Fp d
ZE<DJ>U7U)H (uv)‘”“ 1 =L (Z [DJ]H]Laj-H _1) =L </Joo(Y)L dplL )

JcI jed JcI jed

This in particular holds for the discrepancy divisor D of a resolution of sin-
gularities Y — X and gives Eg (X) in this case.
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3.9 The transformation rule for the motivic integral

Theorem 67 (Transformation rule) Let X and Y be smooth and f :
X — Y a proper birational morphism and W = Ky — f*Kx the discrep-
ancy divisor (W = (det Jacy) > 0). Then

/ FDd,u = / Ff*D+Wd,lL (1].)
oo (Y) oo (X)

Proof. We will only prove this for D = 0. The general proof is analogous.
For the sequence D, = Fy;' (s) it holds (D) — 0 as s — oo (see proof
of the existence of the motivic integral). For k € ZU {oc} we have maps

feo (X)) — Je(Y)
Yz — fonzEJk(Y%c(m)

which are bijective outside the set of zero measure Fj;' (c0), hence the se-
quence Cs = fo (Ds) is a partition of J, (Y') up to a set of measure 0. By
a lemma (see below) we know that Cy is again a cylinder set and p (D) =
1 (Cy) - IL? in particular p (Cs) = pu(Ds) -L™° — 0. Hence ), pu (C) exists
and equals p (J (Y)) =[Y] = fJoo(Y) Fydp. Putting all together we get

[ Bt = p ) = 3@ = S op DL = [ Ry

SEL SEZL

Lemma 68 For D, = Fy,' (s) the set Cy = fo (Dy) is again a cylinder set
and

p(Ds) = p(Cy) - L?

Proof. As shown above D, is a cylinder set. So there is a k£ and a
constructible set B s.t. B is a k-basis of D,. fi (B) is again constructible
(proof omitted) and for k > s the following diagram commutes

Dy, C Jo(X) 3 oY) o fu(Dy) =0,
| |
B c J.(X) &% 5.0) > f(B)=m(fo(Dy)

We want to show that fi |g: B — fi (B) is bundle with fiber A®.
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Let ¢, € m (foo (Ds)) ie. ¥, = m (f 07,) with 7, € Ds. Locally 1,
is given by a d-tuple of polynomials of degree k, so writing the coefficient
vectors in the rows we get

1o -+ A1k 0

wy:

ago -+ aqr 0

and its preimage by 7 is

mt (W,) = {9, + 0 v e Cll)*}
= {f @)+ v e )’}

After a change of coordinates over C [[t]] we can assume, that the Jacobian
matrix J; (¢,) has the form

1

Jacy (¥,) =
o

with s; + ... + s4 = s.
After Taylor expansion of f for u € C[[t]"

[ (ye+u) = fory,+ Jacs (va) u+ ...
hence f (7, +u) € m, ' (¥,) iff ord (t9u;) > k ie.
0 - 0 Uipyr_s, - - C gy

0 «or eee ann 0 Ughi1s, - Udk

SO
£t (mt (1) = {% 4w |we C[H]*, ord(w;) >k —s; for i = 1, ...,d}

Projecting to Ji (X) we get

s (f (T () = {% +w|weC[)*, ord(w;) >k —s;, degw; < k for i =1, ...,d}

o0
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1.e.

0 --- 0 Uy g1 s, v - o w0

O cov e .. 0 Ugps1-s, - Ugr O

and hence the fiber of 7 in an affine space of dimension Z?Zl s; = S.
The etale bundle structure lifts again to a locally trivial bundle structure
in the Zariski topology.

4 Proof of the independence of F  from the
resolution

From now on let X be a normal projective d dimensional variety with at worst
Gorenstein canonical singularities, f : ¥ — X a resolution of singularities
for which the discrepancy divisor D = Ky — f*Kx = 2;1 a;D; has smooth
components D1, ..., D, and only simple normal crossings. Let I = {1,...,r}.

Theorem 69 (Independence of the motivic integral from the resolution)
Let f; - Y; — X, 1 =1,2 be two resolutions of X with discrepancies D;. Then

/ FD1 d:u = / FD2d:U’
Joo (Y1) Joo (Y2)

In particular Fg (X;u,v) = F ( S T (¥) Fpdu - Ld) is independent of the
choice of resolution. The proof can be generalized to the case of X being
Q-Gorenstein.

Proof. Let h: Y — Y] xx Y5 be a resolution (by Hironaka’s theorem)
of the fiber product of ¥; and Y5 over X.

Y
h|
Yi xx Yy
pr1 . Pra
Y Y,
1\ S fe
X

Then we have proper birational morphisms h; = prioh : Y — Y, and
fo:= fioprioh:Y — X (independent of ¢ because of the fiber product).
Denote the discrepancy of fy by Dy.
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In order to apply the transformation rule to lift the integral from Y; to
Y, we compute the discrepancies of the h;. Since

= hi Ky, + (Do — hi D;)
the discrepancies of the h; are

Ky — hiKy, = Dy — hD;

By the transformation rule (11) we get

/ Fp,dp = / Fh;‘Dﬂr(Dofthz‘)d'u = / Fpydp
Joo (Vi) o (Y) oo (Y)

independent of 7.

5 Birational Calabi-Yau manifolds have equal
Hodge numbers

Theorem 70 Birational Calabi- Yau manifolds have equal Hodge numbers.

Proof. Let X; and X5 smooth Calabi-Yau manifolds and f: X; --+» X
a birational map. Let d = dim X; = dim X5. Factor f through the resolution
Y of the graph:
Y

h/ N f2
X1 -—=> X2

with morphisms f; and f5. Denote by W; the discrepancy of f;, so because
Kx, = Ox,

W:=W,=Ky - f{Kx, = Ky = Ky — [y Kx, =W,

With the remark about the motivic integral of Fy and the transformation
rule (11) we get

[Xi] = / Fodp - L? = / Freopw,dp - L¢ = / Fydu - L4
Joo(Xi) Joo(Y) Joo(Y)

so [Xi] = [X3], hence
E(Xy) = E(X1]) = E([X3]) = E(X2)

Remark 71 Actually we proved, that [X1] = [X3], i.e. X1 and Xo represent
the same class in R.
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