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Abstract

These notes are the manuscript for two talks given in a seminar
on motivic integration. They try to explain the basics of motivic
integration, how to apply this to the problem of defining Batyrev´s
stringy E-function for varieties with canonical singularities and how
the stringy E-function relates to the Hodge numbers of crepant resolu-
tions. As a corollary to the transformation rule of the motivic integral
we also prove, that birational Calabi-Yau have equal Hodge numbers.
Be aware, that these are rough notes written to prepare the talks.
Suggestions, comments and corrections are very much appreciated
(boehm@math.uni-sb.de).
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1 Introduction

Definition 1 A normal projective d-dimensional algebraic variety X is called
a Calabi Yau variety, if

• it has at worst Gorenstein canonical singularities.

• KX = OX

• hi (X,OX) = 0 for 0 < i < d.

Remark 2 The Hodge diamond of a smooth Calabi-Yau 3 fold has the form

1
0 0

0 h1,1 (X) 0
1 h1,2 (X) h1,2 (X) 1

0 h1,1 (X) 0
0 0

1

by Serre duality, Hodge duality and KX = Ω3
X = OX

H0,i (X) ' H i (X,OX) ' H i
(
X, Ω3

X

) ' H3,i

∂̄
(X)

So the Euler number is

χ (X) = 2
(
h1,1 (X)− h2,1 (X)

)
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There is a perfect pairing given by wedge product (non canonical)

Ω1
X × Ω2

X → Ω3
X
∼= OX

so
TX

∼= Ω2
X

hence H0 (X,TX) ∼= H0 (X, Ω2
X) and H1 (X, TX) ∼= H1 (X, Ω2

X) = H2,1

∂̄
(X).

Definition 3 Two smooth Calabi-Yau d folds X and X∗ are called a topo-
logical mirror pair, if their Hodge numbers satisfy

hp,q (X) = hd−p,q (X∗) ∀0 ≤ p, q ≤ d (1)

Remark 4 If X and X∗ form a topological mirror pair, then the Hodge
diamonds is mirror symmetric with respect to the diagonal.

Mirror symmetry interchanges the Hodge duality and Poincare duality.

Remark 5 Some background from Physics:
There are 5 different types of string theories. From the point of view of
Physics mirror symmetry of two Calabi-Yau 3-folds X and X∗ is the duality
of two of these types of string theories, defined on the product of a Minkowski
space and X resp. X∗.

Example for duality in physics in the simplest case: Maxwell´s equations
describing the electromagnetic interaction are invariant under the transfor-
mation

E 7→ Bc2

B 7→ −E

which shows, that the electrostatic theory for high interaction energies is
equivalent to magnetic theory for low interaction energies. In the case of
mirror symmetry the duality allows the treatment of enumerative problems
in algebraic geometry.

In Physics the Euler number of X has an interpretation as the number of
generations of Fermions in the corresponding string theory:

Number of generations =
1

2
|χ (X)| = ∣∣h1,1 (X)− h2,1 (X)

∣∣

In particular we see, that mirror symmetric string theories have the same
number of Fermion generations.
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Example 6 Consider the family of quintic 3 folds X ⊂ P4. By adjunction
formula

KX = OX

By Lefschetz Hyperplane Theorem we have

Hk (X,C)
'←− Hk

(
P4,C

)
=

{
C k = 0, 2
0 k = 1

}

hence as X is Kähler we have h0,1 (X) = h0,2 (X) = 0 and

h1,1 (X) = 1

From the Euler sequence and conormal sequence we get

h1,2 (X) = 101

Since h1,1 (X) = 1, for the mirror X∗ should hold

dim H1 (X∗, TX) = dim H1
(
X∗, Ω2

X

)
= h2,1 (X∗) = h1,1 (X) = 1

hence in order to construct the mirror we have to look for a 1-parameter
family.

It turns out that the right choice is

Xλ =
{
x5

0 + x5
1 + x5

2 + x5
3 + x5

4 + λx0x1x2x3x4 = 0
}

divided out by the Z5
5 action (a0, ..., a4) (x0 : ... : x4) = (µa0x0 : ... : µa4x4) with

µ = e
2πi
5 . Resolving the singularities of this singular quotient without destroy-

ing the Calabi-Yau property gives the mirror.

In constructing mirror pairs we encounter several problems:

1. Even if we start with a manifold, we encounter singular varieties (see
quintic in P4).

First of all we know, that we can resolve the singularities by a sequence
of blowups:

Theorem 7 (Hironaka) Let X be a normal projective variety over an
algebraically closed field of characteristic 0. For any proper subvariety
D ⊂ X there exists a smooth projective variety Y and a birational
morphism f : Y → X s.t. f−1 (D) is a divisor with only simple normal
crossings (and f is a composition of blowups in smooth closed centers).
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For a proof, and an algorithmic implementation of Hironaka´s theorem
see [8].

2. Of course we want the resolved variety to still be a Calabi-Yau:

Definition 8 A birational projective morphism f : Y → X with Y
smooth and X at worst Gorenstein canonical singularities is called
crepant desingularization of X if f ∗KX = KY .

If the crepant desingularizations of Y → X resp. Y ∗ → X∗ exist, we
can define a topological mirror pair by

hp,q (Y ) = hd−p,q (Y ∗) ∀0 ≤ p, q ≤ d

However it is not obvious that this is well defined: If a crepant desingu-
larization exists, it is not necessarily unique. In particular, given two
crepant resolutions Y1 → X and Y2 → X it is not clear a priori, that
the Hodge numbers of Y1 and Y2 are equal (we will prove that they are
indeed equal).

Example 9 Let X0 be a smooth Fano embedded by a very ample line
bundle L with Lk = K−l

X0
(k, l ∈ N), let E = OX0 ⊕ L and consider the

map

f : Y = P (E) → X ⊂
'H0(P(E),OP(E)(1))

P (H0 (X0,OX0 ⊕ L))
π ↓↑ σ

X0

which is the contraction of σ (X0) ' X0 where σ : X0 → P (E) is the
section of the P1-bundle P (E) corresponding to the natural embedding
OX0 ↪→ OX0 ⊕ L. Hence X = C (X0) is a cone over X0.

We now calculate the discrepancy: π is the blowup of X in the singular
point of X with exceptional locus D = σ (X0) ' X0. So

OY (D) |D= ND/Y = L−1

Write
KY = π∗KX ⊗OY (D)a

and restrict to D
KY |D= OY (D)a |D= L−a
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The adjunction formula yields

L−
k
l = KD = (KY ⊗OY (D)) |D= L−a ⊗ L−1 = L−(a+1)

so a = k
l
− 1.

Now consider the case of a smooth quadric X0 ' P1 × P1 ⊂ P3. Then
we can write X = S (1, 1, 0) as

X =

{
det

(
y0 y2

y1 y3

)
= 0

}
⊂ P4

so P = (0 : 0 : 0 : 1) is the singular point of X. The discrepancy is

KY = π∗KX + D

We now calculate a small and hence crepant resolution of X = C (X0).
Let

E1 := OP1 (2)⊕OP1 (2)⊕OP1 (1)

E2 := OP1 (1)⊕OP1 (1)⊕OP1

The maps from P (E1) = P (E2) to P
(
H0

(
P (Ei) ,OP(Ei) (1)

))
= P (H0 (P1, Ei))

give rise to a diagram

P (OP1 (2)⊕OP1 (2)⊕OP1 (1))
∼→ S (2, 2, 1) =: Ysmall

‖
P (OP1 (1)⊕OP1 (1)⊕OP1) → S (1, 1, 0) = X

and hence to a morphism Ysmall → X, e.g. with

S (2, 2, 1) =

{
minors

(
2,

(
x0 x1 x3 x4 x6

x1 x2 x4 x5 x7

))
= 0

}
⊂ P7

A morphism g : Ysmall → X is given by

g (x0 : ... : x7) = (x0 : x1 : x3 : x4 : x6)

and the exceptional locus is P1.

3. There are also C-Y varieties, which do not have crepant desingularizations.
Nevertheless we want to have a notion of mirror symmetry for these.
We will see some examples later.
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First idea:
Define stringy Hodge numbers hp,q

st (X) for singular varieties. The obvious
conditions they should satisfy are:

0. For smooth varieties they should coincide with the usual Hodge num-
bers.

1. If there exists a crepant desingularization Y → X, they should coincide
with the Hodge numbers of Y .

2. Even if there is no crepant desingularization we still want a notion of
mirror symmetry.

We will see that for the enlarged class of varieties we will be considering,
there in general is no notion of stringy Hodge numbers. But as there is a (not
nessecarily polynomial) generating function encoding equivalent information,
there is still a notion of mirror symmetry.

2 Mirror Symmetry and Stringy Hodge Num-

bers

Let X be an irreducible normal algebraic variety of dimension d over C.

2.1 The Hodge weight filtration and the E Polynomial

The cohomology groups Hk (X,Q) carry a natural mixed Hodge structure
[5], [6], which is given by the following data:

An increasing filtration

0 = W−1 ⊂ W0 ⊂ ... ⊂ W2k = Hk (X,Q)

on Hk (X,Q) called weight filtration, and an decreasing filtration

Hk (X,C) = F 0 ⊃ F 1 ⊃ ... ⊃ F k ⊃ F k+1 = 0

on Hk (X,C) = Hk (X,Q)⊗ C called Hodge filtration. We then have

Hp,q
(
Hk (X,C)

)
= F pGrp+qH

k (X,C) ∩ F qGrp+qHk (X,C)

where

GrlH
k (X,Q) := (Wl/Wl−1)

F pGrlH
k (X,C) := Im

(
F p ∩ (Wl ⊗ C) → GrlH

k (X,Q)⊗ C)
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and the filtrations have the property that F pGrlH
k (X,C) gives a (pure)

Hodge structure of weight l on GrlH
k (X,Q).

We therefore have a decomposition

Hk (X,C) =
⊕
p,q

Hp,q
(
Hk (X,C)

)

In [4] one can find a proof, that also the cohomology with compact support
H i

c (X,Q) admits a mixed Hodge structure.

Definition 10 The E-polynomial E (X; u, v) ∈ Q [u, v] (coefficients in Z)
of a complex normal algebraic variety X of dimension d is then defined as

E (X; u, v) :=
∑

0≤p,q≤d

∑

0≤i≤2d

(−1)i hp,q
(
H i

c (X)
)
upvq (2)

So we have a map from the category of normal algebraic varieties VC to
Q [u, v] by

E : obVC → Q [u, v] , X 7→ E (X; u, v)

associating to each X its E polynomial.

Important properties of the E polynomial:

Proposition 11 Let X and Xi complex normal algebraic variety.

1. If X =
⋃

i Xi is stratified by a disjoint union of locally closed sub-
varieties then

E (X) =
∑

i

E (Xi)

2.
E (X1 ×X2) = E (X1) · E (X2)

3. If X → B is a locally trivial fibration and F the fiber over the closed
point then

E (X) = E (F ) · E (B)

A proof can be found in the previously mentioned paper by Danilov
and Khovanskii. Note that the number of Fq-points of a variety has sim-
ilar properties as E.
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Remark 12 For smooth compact X of dimension d

E (X; u, v) :=
∑

0≤p,q≤d

hp,q (X) upvq (3)

with hp,q (X) = dim Hp,q

∂̄
(X) = dim Hq (X, Ωp

X).

• Hodge duality for X is equivalent to

E (X; u, v) = E (X; v, u)

• Poincare duality for X is equivalent to

E (X; u, v) = (uv)d E
(
X; u−1, v−1

)

• Mirror symmetry for 2 varieties X and X∗ is equivalent to

E (X; u, v) = udE
(
X∗; u−1, v

)

Remark 13 Consider a stratification X = U ∪ C with X and C compact.
The long exact sequence for cohomology with compact support reads as

... → Hk
c (U)

ϕk→ Hk (X)
ψk→ Hk (C)

δk→ Hk+1
c (U) → ...

where ϕk is given by continuation by 0, ψk is given by restriction and the
boundary map δk is given by $ 7→ d (β · r∗$) where r is the retract of a
tubular neighborhood of C and β is a bump function on this neighborhood.

Example 14 For X = P1, U = C and C = {pt} we have

k = Hk
c (C) → Hk (P1) → Hk (pt)

2 uv uv 0
1 0 0 0
0 0 1 1

where we denote the Hodge filtration by the corresponding E monomials. The
E-polynomials are

E (C) = uv E (P1) = 1 + uv E (pt) = 1

Remark: The long exact sequence decomposes in short ones if all varieties
only have even cohomology.

9



For X = P3, C an elliptic curve and U = P3 − C we have

k = Hk
c (U) → Hk (P3) → Hk (C)

6 (uv)3 (uv)3 0
5 0 0 0

4 (uv)2 (uv)2 0
3 0 0 0
2 u + v uv uv
1 0 0 −u− v
0 0 1 1

The E-polynomials are

E (U) = u + v + (uv)2 + (uv)3 E (P3) = 1 + uv + (uv)2 + (uv)3 E (C) = 1− u− v + uv

So a shift in the cohomological weight occurs (Note also the sign of the u + v
term).

Example 15 (continued) The corresponding Hodge filtration for the cohomology
of U :

k = 0 GrlH
k

l = 0
F0

0 = W−1 ⊂ W0 = H0 (U,Q)

k = 2 GrlH
k

l = 0 1 2 3 4
F0 F1 F2

u
v

0 = W−1 = W0 ⊂ W1 = ... = W4 = H2 (U,Q)

k = 4 GrlH
k

l = 0 1 2 3 4 5 6 7 8
F0 F1 F2 F3 F4

(uv)2

0 = W−1 = ... = W3 ⊂ W4 = ... = W8 = H4 (U,Q)

similar for k = 6.
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Example 16 We continue our example (9) of the cone over the quadric
calculating the E-functions:

The cohomology ring H∗ (X0) of X0 is generated by hi = pr∗i c1 (P1), i =
1, 2 and hence 1, h1, h2, h1h2 is a basis as a vector space, so

E (X0) = 1 + 2uv + (uv)2

which agrees with the product formula E (X0) = E (P1)
2

= (1 + uv)2.
H∗ (Y ) is a free module over H∗ (X0) with basis 1, c = c1 (OY (1)) and

hence 1, c, h1, h2, ch1, ch2, h1h2, ch1h2 is a vector space basis (where hi is short
for π∗hi), so

E (Y ) = 1 + 3uv + 3 (uv)2 + (uv)3

H∗ (Ysmall) is a free module over H∗ (P1) with basis 1, c, c2 with c =
c1 (OYsmall

(1)) and hence 1, h, c, c2, ch, hc2 is a vector space basis (h = π∗c1 (P1)),
so

E (Ysmall) = 1 + 2uv + 2 (uv)2 + (uv)3

So the E polynomials

E (Y \X0) = E (Y )− E (X0) =
(
1 + 3uv + 3 (uv)2 + (uv)3)− (

1 + 2uv + (uv)2)

= uv + 2 (uv)2 + (uv)3

E
(
Ysmall\P1

)
= E (Ysmall)− E

(
P1

)
=

(
1 + 2uv + 2 (uv)2 + (uv)3)− (1 + uv)

= uv + 2 (uv)2 + (uv)3

agree as expected because of Y \X0
∼= X\P ∼= Ysmall\P1. By this we can also

calculate
E (X) = 1 + uv + 2 (uv)2 + (uv)3

2.2 Varieties with Canonical Singularities

Definition 17 A normal projective variety X is said to have at worst canonical
singularities if

• X is Q-Gorenstein, equivalently KX ∈ Div (X)⊗Q
• For a resolution of singularities f : Y → X s.t. the exceptional locus of

f is a divisor E whose irreducible components D1, ..., Dr are smooth di-
visors with only simple normal crossings and KY = f ∗KX +

∑r
i=1 aiDi,

we have
ai ≥ 0 for all i

(the discrepancy divisor is effective).
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2.3 The Stringy E-Function

From now on we consider a normal projective d dimensional variety X with
at worst Gorenstein canonical singularities, f : Y → X a resolution of singu-
larities with D1, ..., Dr the smooth components of the exceptional locus with
only simple normal crossings.

Let I = {1, ..., r} and set for any J ⊂ I

DJ = Y ∩
⋂
j∈J

Dj

D◦
J = DJ\

⋃

i∈I\J
Di

This gives a stratification DJ =
⋃

J ′,J⊂J ′ D
◦
J ′ .

Definition 18 We define the stringy E-function Est of X as

Est (X; u, v) :=
∑
J⊂I

E (D◦
J ; u, v)

∏
j∈J

uv − 1

(uv)aj+1 − 1
(4)

Remark 19 If X is Gorenstein, then the aj ∈ Z≥0 and hence Est (X; u, v) ∈
Z [[u, v]] ∩Q (u, v). Est (X; u, v) is not a rational function in general.

Now we will state the main theorem, assuring that Est (X; u, v) is well
defined. We will prove this theorem by motivic integration:

Theorem 20 Est (X; u, v) does not depend on the resolution f : Y → X, in
particular Est (X; u, v) is well defined.

As a direct Corollary, we have:

Corollary 21 If X is smooth Est (X; u, v) = E (X; u, v).

Remark 22 Let´s first make an easy observation: Est is not affected by the
blowup f : Y → X of a point P in smooth X: The exceptional locus of f is
D1 = Pd−1 and the discrepancy is

KY = f ∗KX + (d− 1) D1

Est (X) = E (Y \D1) + E (D1)
uv − 1

(uv)a1+1 − 1
= E (Y \D1) + E

(
Pd−1

) uv − 1

(uv)d − 1

= E (Y \D1) +
(
1 + uv + ... + (uv)d−1

) uv − 1

(uv)d − 1

= E (Y \D1) + 1 = E (X)
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The idea of the proof of (20) is the following:
The universality of the map [−] from the category of complex algebraic

to the Grothendieck ring gives a factorization of E : obVC → Q [u, v] through
the Grothendieck ring M

obVC E−→ Q [u, v]
[−] ↘ ↗ E

M
The goal is to write

Est (X; u, v) =
∑
J⊂I

E (D◦
J ; u, v)

∏
j∈J

uv − 1

(uv)aj+1 − 1
= E

(∫

J∞(Y )

FDdµLd

)

for a suitable function FD associated to the discrepancy divisor (J∞ (Y ) the
bundle of formal arcs on Y ), after extending E to K0 (VC) [L−1] (where
L = [C]) and to an appropriate completion. The transformation rule then
gives, that the motivic integral does not depend on the resolution.

2.4 Stringy Hodge numbers

In order to prove Poincare Duality we need the following lemma, which proves
useful also in a more general sense:

Lemma 23 For all J ⊂ I

E (D◦
J ; u, v) =

∑

J ′ with J⊂J ′
(−1)|J |−|J

′| E (DJ ; u, v)

so

Est (X; u, v) =
∑
J⊂I

E (DJ ; u, v)
∏
j∈J

(
uv − 1

(uv)aj+1 − 1
− 1

)

Instead of proving this (easy) we will illustrate it in an example:

Example 24 I = {1, 2} and a1 = 1, a2 = 1 and D1 ∩D2 = {P}:
Stratification by D◦

J :

Y = (Y \ (D1 ∪D2)) ∪ (D1\ {P}) ∪ (D2\ {P}) ∪ {P}
The first formula reads:

E (D◦
∅) = E (Y \ (D1 ∪D2)) = E (Y )− E (D1)− E (D2) + E (P )

E
(
D◦
{j}

)
= E (Dj\P ) = E (Dj)− E (P )

E
(
D◦
{1,2}

)
= E (P ) = E (P )
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By this

Est (X; u, v) =
∑
J⊂I

E (D◦
J ; u, v)

∏
j∈J

uv − 1

(uv)aj+1 − 1
=

= (E (Y )− E (D1)− E (D2) + E (P ))

+ (E (D1)− E (P ))
1

uv + 1
+ (E (D2)− E (P ))

1

uv + 1

+ E (P )
1

(uv + 1)2

= E (Y )

+ E (D1)

(
1

uv + 1
− 1

)
+ E (D2)

(
1

uv + 1
− 1

)

+ E (P )− 2E (P )
1

uv + 1
+ E (P )

1

(uv + 1)2

Theorem 25 (Poincare Duality) Est (X; u, v) has the following properties:

Est (X; u, v) = (uv)d Est

(
X; u−1, v−1

)

Est (X; 0, 0) = 1

Proof. From the Lemma (23) we have

Est (X; u, v) =
∑
J⊂I

E (DJ ; u, v)
∏
j∈J

(
uv − 1

(uv)aj+1 − 1
− 1

)
(5)

=
∑
J⊂I

E (DJ ; u, v)
∏
j∈J

(
uv − (uv)aj+1

(uv)aj+1 − 1

)

We can check duality for each term separately: Poincare Duality holds for
each closed DJ

(uv)d−|J | E
(
DJ ; u−1, v−1

)
= E (DJ ; u, v)

and
∏
j∈J

(
uv − (uv)aj+1

(uv)aj+1 − 1

)
= (uv)|J |

∏
j∈J

(
(uv)−1 − (uv)−aj−1

(uv)−aj−1 − 1

)

Substituting u = v = 0 in the equality (5) yields

Est (X; 0, 0) =
∑
J⊂I

E (DJ ; 0, 0)
∏
j∈J

(−1

−1
− 1

)
= E (Y ; 0, 0)
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Definition 26 If E is a polynomial, then deg (E) = 2d. We then define the
stringy Hodge numbers of X as

hp,q
st (X) = (−1)p+q coeff (Est, u

pvq)

So hp,q
st (X) = 0 outside the Hodge diamond and h0,0

st (X) = hd,d
st (X) = 1.

2.5 Crepant Resolutions and Mirror Symmetry

Theorem 27 If X admits a crepant resolution f : Y → X then Est (X; u, v) =
E (Y ; u, v).

Proof. By Hironaka´s theorem there is a smooth Z and a birational
morphism g : Z → Y , s.t. f ◦ g is a resolution of singularities of X and
the exceptional locus has normal crossing irreducible components D′

1, ..., D
′
r′ .

Let D1, ..., Dr be the irreducible normal crossing components of g. Write the
discrepancy loci as

KZ = g∗KY +
r∑

i=1

aiDi

and for f ◦ g as

KZ = g∗f ∗KX +
r′∑

i=1

a′iD
′
i

By f ∗KX = KY we have

r∑
i=1

aiDi =
r′∑

i=1

a′iD
′
i

Denote the supports of the exceptional loci of f ◦ g and f by supp D and
supp D′. Clearly supp D ⊂ supp D′, so if D′

i ⊂ supp D′\ supp D then a′i = 0.
So computing Est (Y ) from f and Est (X) from f ◦ g gives the same

formula, since terms with ai = 0 don´t contribute. Hence

E (Y ) = Est (Y ) = Est (X)

since Y is smooth.

Remark 28 In particular Est (X; u, v) is polynomial and hence the stringy
Hodge numbers of X exist. Equivalently, if Est (X; u, v) is not polynomial,
then X admits no crepant resolution.
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Definition 29 Two Calabi-Yau varieties X and X∗ are called topological
mirror pair, if their stringy E functions satisfy

Est (X; u, v) = udEst

(
X∗; u−1, v

)

Remark 30 This is well defined even in the case, when Est is not polyno-
mial. If a crepant resolution exists, the notion of a stringy topological mirror
pair coincides with the previous definition.

Example 31 Now we return to the example (9) and (16) from above: X0 ⊂
Pd a smooth quadric and

f : P (OX0 (1)⊕OX0) = Y → X = C (X0)

with discrepancy divisor D1 ' X0.
For d = 3 we had X = S (1, 1, 0), we computed a small resolution

S (2, 2, 1) = Ysmall → X

and calculated

E (Ysmall) = 1 + 2uv + 2 (uv)2 + (uv)3

E (Y ) = 1 + 3uv + 3 (uv)2 + (uv)3

E (D1) = 1 + 2uv + (uv)2

E (Y \D1) = uv + 2 (uv)2 + (uv)3

So the stringy E function Est is

Est (X) = E (D◦
∅) + E

(
D◦
{1}

) uv − 1

(uv)2 − 1
= E (Y \D1) + E (D1)

1

uv + 1

=
(
uv + 2 (uv)2 + (uv)3) + (1 + uv)2 1

uv + 1

= 1 + 2uv + 2 (uv)2 + (uv)3 = E (Ysmall)

and, as predicted by the theorem (27), the stringy Hodge Numbers of X indeed
coincide with the Hodge numbers of the small resolution.

Exercise 32 Show that in the preceding example Est is not a polynomial for
d > 3 (in particular X does not admit a crepant resolution).
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3 Motivic Integration

In the following let Y be a algebraic complex manifold of dimension d.

3.1 Overview

Our to goal is to prove the theorem (20) (in the case of X Gorenstein). Short
overview of the objects involved in the proof:

• The main part of the proof will take place on the smooth variety Y .
The necessary data is the discrepancy divisor on D on Y , but this can
also be any other effective divisor with simple normal crossings.

• We will use the following objects:

– The bundle J∞ (Y ) of formal arcs in Y . Think of the fiber over y ∈
Y as all formal curves in Y through y i.e. power series expansions
in one variable in Y .

– A function FD : J∞ (Y ) → Z≥0 ∪ {∞} associating to each γy ∈
J∞ (Y ) its intersection multiplicity with D, encoding all the infor-
mation about D.

– The Grothendieck ringM of isomorphy classes of algebraic varieties.

– A measure µ on cylinder sets in J∞ (Y ) taking values in M [L−1]
where L denotes the class of C.

– The level sets F−1
D (s), which will turn out to be cylinder sets for

finite s.

– A completion R ofM [L−1] and an extended measure taking values
in R. We will need this, because the level set F−1

D (∞) is not a
cylinder set.

– The motivic integral∫

J∞(Y )

L−FDdµ :=
∑

s∈Z≥0∪{∞}
µ

(
F−1

D (s)
) · L−s

which we will compute explicitly.

• The universality of the map [−] from the category of complex algebraic
varieties to the Grothendieck ring gives a factorization of E : VC →
Q [u, v] through the Grothendieck ring

obVC E−→ Q [u, v]
[−] ↘ ↗ E

M

17



which extends to R. It turns out that the whole theory is constructed
in a way that

Est (X; u, v) = E

(∫

J∞(Y )

FDdµLd

)

and that the motivic integral for the discrepancy divisor does not de-
pend on the choice of the resolution, because of the transformation
rule.

• As a corollary to the transformation rule we will also prove, that bira-
tional smooth Calabi-Yau have the same Hodge numbers.

3.2 The bundle of formal arcs

Definition 33 Let y ∈ Y .
A k-jet over y is a morphism

γy : SpecC [z] /
〈
zk+1

〉 → Y

with γy (SpecC) = y

(Note that SpecC [z] /
〈
zk+1

〉
has only one element, which is the ideal 〈z〉,

and this corresponds to SpecC). In local coordinates of Y think of a k-jet as
a d-tuple of polynomials of degree k whose constant terms are zero.

A formal arc over y is a morphism

γy : SpecC [[z]] → Y

with γy (SpecC) = y

In local coordinates of X a formal arc is a d-tuple of power series whose
constant terms are zero.

We can build bundles Jk (Y ) → Y and J∞ (Y ) → Y with fibers (Jk (Y ))y =
{k-jets of Y over y}and (J∞ (Y ))y = {formal arcs of Y over y} over y.

Example 34 First explore this in the case Y = Ad = Spec (C [x1, ...., xd]).
We have to consider the ring homomorphisms

C [x1, ...., xd] → C [z] /
〈
zk+1

〉

which are given by classes of polynomials

xi 7→ ai0 + ai1z̄ + ... + aikz̄
k

18



so Jk (Y ) is parametrized by the coefficients aij i = 1, ..., d, j = 0, ..., k hence

Jk (Y ) ∼= Ad·(k+1)

(Remark: In general Jk (Y ) is a bundle. Here a factor Ad corresponds to the
base.).

One can show that this stays true if Y is smooth.
Let y ∈ Y = V (f1, ..., fs) ⊂ An and d = dim Y . Because Y is smooth

after a change of coordinates we can by the implicit function theorem for
power series find unique power series

yd+1, ..., yn ∈ 〈x1, ..., xd〉 · C [[x1, ..., xd]]

s.t.
fi (x1, ..., xd, yd+1, ..., yn) = 0 for all i = 1, ..., s

and (x1, ..., xd, yd+1 (x1, ..., xd) , ..., yn (x1, ..., xd)) parametrizes Y in some open
set in a topology, where the implicit function theorem holds. Now specifying
power series X1, ..., Xd ∈ C [[z]] is the same as specifying an arc in Y :

X1 = X1 (z)

...

Xd = X1 (z)

Xd+1 = Yd+1 (X1 (z) , ..., Xd (z))

...

Xn = Yn (X1 (z) , ..., Xd (z))

This stays of course also true for any truncation of the power series to
C [z] /

〈
zk+1

〉
.

So the coefficients of the Xi give the locally trivial bundle structure of
Jk (Y ) over an open set in the etale topology (where the implicit function
theorem holds). Then one has to show, that this induces a locally trivial
bundle structure in the Zariski topology.

Proposition 35 Let Y be smooth of dimension d. There are bundles Jk (Y ) →
Y resp. J∞ (Y ) → Y with fibers over y the k-jets resp. arcs of Y over y.

Jk (Y ) is an Ak·d bundle over Y , in particular it is smooth (this is no
longer true if Y is not smooth, as the fiber dimension may jump).

Js (Y ) is an A(s−r)·d bundle over Jk (Y ) for s > r.
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For each k the natural truncation C [[z]] → C [z] /
〈
zk+1

〉
induces a bundle

map
πk : J∞ (Y ) → Jk (Y )

which is surjective, because every γy ∈ Jk (Y ) can be lifted to J∞ (Y ).
Similarly the truncation induces surjective bundle maps

πs,k : Js (Y ) → Jk (Y )

for s > k.

The standard proof goes as follows: Define the Jk (Y ) as schemes, show:

Lemma 36 If Z → Y is etale, then Jk (Z) ∼= Jk (Y )×Y Z

So since a smooth Y is locally etale over An in the Zariski topology, we
get the assertion.

Remark 37 • The k-valued points of Jk (Y ) are the C [z] /
〈
zk+1

〉
valued

points of Y .

• J0 (Y ) ∼= Y

• J1 (Y ) ∼= TY is the tangent bundle. In general we can describe Jk (Y )
by k-th. order derivations.

• The inverse limit of the Jk (Y ) is J∞ (Y ) = lim
←

Jk (Y ).

3.3 Constructible sets

Definition 38 A subset of a variety is called constructible, if it is a fi-
nite disjoint union of locally closed subvarieties (with respect to the Zariski
topology).

A subset C ⊂ J∞ (Y ) is called a cylinder set, if C = π−1
k (Bk) with

Bk ⊂ Jk (Y ) constructible. Bk is called k-basis of C.

Remark 39 If πk (C) is a k-basis for C, then for all s > k

πs (C) = π−1
s,k (πk (C))

is the s-base of C, i.e. πs (C) is constructible and C = π−1
s πs (C).

Finite unions and intersections and complements of cylinder sets are
cylinder sets.

Proof. Easy exercise, e.g. for the union of two cylinder sets: Let C =
π−1

k (Bk) with Bk ⊂ Jk (Y ) and C ′ = π−1
s (B′

s) with B′
s ⊂ Js (Y ) and suppose

k < s. Then with Bs := π−1
s,k (Bk) we have C = π−1

s (Bs) and C ∪ C ′ =
π−1

s (Bs ∪B′
s).
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3.4 The function FD encoding the information of D

In the following let D =
∑r

i=1 aiDi be an effective divisor on Y and I =
{1, ..., r}.

Definition 40 For y ∈ Y a point and g a local equation of D in a neighbor-
hood U of y. For an arc γy over y we call

γy ·D := vanishing order of g (γy (z)) at z = 0

the intersection number of γy and D. Let FD be the function

FD : J∞ (Y ) → Z≥0 ∪ {∞}
γy 7→ γy ·D

The goal is to integrate FD : J∞ (Y ) → Z≥0 ∪ {∞}, γy 7→ γy · D over
J∞ (Y ). In order to do this we will show, that the level sets are cylinder sets
and compute µ

(
F−1

D (s)
)

with respect to some measure µ.

3.5 Local description of the level sets of FD

With the same notation as in the case of D being an exceptional locus, write
for any J ⊂ I

DJ = Y ∩⋂
j∈J Dj D◦

J = DJ\
⋃

i∈I\J Di

The partition Y =
·⋃

J⊂I

D◦
J induces a partition

J∞ (Y ) =
·⋃

J⊂I

π−1
0 (D◦

J)

So we can produce a partition of any subset of J∞ (Y ) by intersecting with
the π−1

0 (D◦
J).

We will do this for the level sets F−1
D (s) by the following construction.

Remark 41 It holds

FD =
r∑

i=1

aiFDi

hence for γy ∈ J∞ (Y ) we have FD (γy) =
∑r

i=1 aiFDi
(γy) and for the

terms of the sum the following holds:
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Remark 42 For γy ∈ J∞ (Y )

FDi
(γy) = 0 ⇔ y /∈ Di

Combining both and writing s = FD (γy), mi = FDi
(γy) it holds

∑r
i=1 aimi =

s and

(mj > 0 ⇔ j ∈ J) ⇔ (y ∈
⋂
j∈J

Dj and y /∈
⋂

j∈I\J
Dj) ⇔ y ∈ D◦

J

So with the

Definition 43 For J ⊂ I and s ∈ Z≥0

MJ,s :=
{
(m1, ..., mr) ∈ Zr

≥0 | a1m1 + ... + armr = s and mj > 0 ⇔ j ∈ J
}

we proved γy ∈ π−1
0 (D◦

J) ∩ F−1
D (s) ⇔ (FD1 (γy) , ..., FDr (γy)) ∈ MJ,s that is:

Proposition 44 For each J ⊂ I it holds

π−1
0 (D◦

J) ∩ F−1
D (s) =

·⋃
m∈MJ,s

⋂
i∈I

F−1
Di

(mi) (6)

and hence for each s ∈ Z≥0

F−1
D (s) =

·⋃
J⊂I

·⋃
m∈MJ,s

(⋂
i∈I

F−1
Di

(mi)

)
(7)

is a finite partition of the level set F−1
D (s).

Example 45 We describe this in an example:

D = D1 + D2

with D1 ∩D2 = {P}. Set for J

MJ,s =
{
(m1,m2) ∈ Z2

≥0 | m1 + m2 = s and mj > 0 ⇔ j → J
}
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which gives an partition of Z2
≥0:

So

π−1
0 (D◦

∅) ∩ F−1
D (s) =

{
F−1

D1
(0) ∩ F−1

D2
(0) for s = 0

∅ otherwise

}

π−1
0

(
D◦
{1}

) ∩ F−1
D (s) = F−1

D1
(m1) ∩ F−1

D2
(0)

π−1
0

(
D◦
{1,2}

) ∩ F−1
D (s) =

⋃
m1+ms=s
m1,m2≥1

F−1
D1

(m1) ∩ F−1
D2

(m2)

Hence in this case

F−1
D (s) =

⋃
m1+ms=s
m1,m2≥0

F−1
D1

(m1) ∩ F−1
D2

(m2)

Remark 46 (Local description of the level sets) Let D =
∑r

i=1 aiDi

be an effective, normal crossing divisor. There is a finite covering of Y
by coordinate charts U → V ⊂ Cd, s.t. D is given in the chart by the equa-
tion za1

1 · ... · zaby

by
= 0 with a1, ..., aby ≥ 1 and 0 ≤ by ≤ d (without loss of

generality). For s ∈ Z≥0 and (m1, ..., mr) ∈ MJ,s write

Um1,...,mr :=
⋂
i∈I

F−1
Di

(mi) ∩ π−1
0 (U)

• If J is not contained in the set of variables appearing in the local equa-
tion of D i.e. J 6⊂ {1, ..., by}, then U ∩D◦

J = ∅ hence

Um1,...,mr = ∅
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• Otherwise i.e. if J ⊂ {1, ..., by},
we can describe

⋂
i∈I F−1

Di
(mi)∩π−1

0 (U) (i.e. power series with vanish-
ing order mi.on Di) as the preimage by πk of the power series truncated
to degree

k = max {m1, ..., mr | j = 1, ..., r}
So we get d− |J | power series with vanishing constant term

0 +
∈C
(...)z + ... +

∈C
(...)zk

and |J | power series of the form

0 + ... + 0 +
∈C∗
(...)zmj +

∈C
(...)zmj+1 + ... +

∈C
(...)zk

and conclude with (6)

Um1,...,mr ' π−1
k

(
(U ∩D◦

J)× Ck(d−|J |) × (C∗)|J | × C
∑

j∈J k−mj

)
(8)

= π−1
k

(
(U ∩D◦

J)× Cd·k−∑
j∈J mj × (C∗)|J |

)

Example 47 For U = C2 and D = D1 + D2 given by z1z2 = 0, P = 0 ∈ C2

we have

F−1
D1

(m1) ∩ F−1
D2

(m2) ∩ π−1
0 (U) '

J = ∅ (m1,m2) = (0, 0) π−1
0 (C2\ (D1 ∪D2))

J = {1} (m1,m2) = (m1, 0) π−1
m1

((D1\ {P})× Cm1 × C∗)
J = {1, 2} (m1,m2) ,m1 ≥ m2 ≥ 1 π−1

m1

({P} × Cm1−m2 × (C∗)2)

With the remark (46) about the local description of the level sets it easily
follows:

Proposition 48 (Finite level sets are cylinder sets) For a normal cross-
ing effective divisor D the level set F−1

D (s) is a cylinder set for all s ∈ Z≥0.
F−1

D (∞) is a countable intersection of cylinder sets.

Proof. By (8)
⋂

i∈I F−1
Di

(mi) ∩ π−1
0 (U) is a cylinder set and hence also⋂

i∈I F−1
Di

(mi) as a finite union of cylinder sets and so by (7) also F−1
D (s)

again as a finite union of cylinder sets is a cylinder set.
For the infinity level set F−1

D (∞), we remark that

F−1
D (∞) =

⋂

k∈Z≥0

π−1
k πk

(
F−1

D (∞)
)

We only have to check this for each Di and here it holds because a power
series is 0 if and only if all truncations to any order are 0.
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3.6 The Grothendieck ring and the measure for cylin-
der sets in J∞ (Y )

Definition 49 The Grothendieck ring of complex algebraic varieties
M is the free abelian group of isomorphism classes of complex algebraic
varieties modulo the subgroup generated by [X] − [V ] − [X − V ] for closed
subsets V ⊂ X, with a ring structure given by

[X] · [X ′] = [X ×X ′]

We call the neutral element [point] =: 1 and [C] =: L.

(So [C∗] = L− 1).

Remark 50 Let f : X → B be a locally trivial fibration (with respect to
Zariski topology) of complex algebraic varieties and F the fiber of f over a
closed point, then

[X] = [F ] · [B]

Proof. There is a finite open covering {Ui} of B s.t. X is trivial over Ui.
By induction on the number of Ui we only need to prove this for a covering
U1 ∪ U2: We then have f−1 (U1) ' F × U1 so

[
f−1 (U1)

]
= [F ] · [U1]

and as B\U1 ⊂ U2 we also have f−1 (B\U1) ' F × (B\U1)

[
f−1 (B\U1)

]
= [F ] · [B\U1] = [F ] · ([B]− [U1])

where the last equation holds because B\U1 is closed. Since f−1 (B\U1) is
closed in X we get

[X] =
[
f−1 (U1)

]
+

[
f−1 (B\U1)

]
= [F ] · ([U1] + [B]− [U1]) = [F ] · [B]

Definition 51 For a cylinder set C = π−1
k (Bk) with Bk ⊂ Jk (Y ) we define

an additive measure

µ : {cylinder sets} →M [
L−1

]
(9)

µ (C) := [Bk] · L−d(k+1)
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Proof. µ is well defined: Let s > k and C = π−1
k (Bk) a cylinder. Then

with Bs := π−1
s,k (Bk) we have C = π−1

s (Bs). As the fibers of πs,k are Cd·(s−k)

by the remark about locally trivial fibrations we have [Bs] =
[
Cd·(s−k) ×Bk

]
hence

[Bs] · L−d(s+1) = Ld(s−k) · [Bk] · L−d(s+1) = [Bk] · L−d(k+1)

A similar argument proves the additivity.
By this definition we can compute the measure of the level sets F−1

D (s)
for s ∈ Z≥0, but not of F−1

D (∞). Hence we will have to define an additive
measure with values in a completion R of M s.t. it is compatible with µ and
F−1

D (∞) has measure 0. We will denote the new measure again by µ.

3.7 Measure of the level sets

Proposition 52 (Measure of the level sets) For s ∈ Z≥0 the measure of
the level sets F−1

D (s) of FD is

µ
(
F−1

D (s)
)

=
∑
J⊂I

∑
m∈MJ,s

[D◦
J ] · L−

∑
j∈J mj · (L− 1)|J | · L−d

Proof. As above we cover Y by coordinate charts Uj → V ⊂ Cd, s.t. D

is given in each chart by an equation za1
1 · ... · zby

by
= 0. Then for s ∈ Z≥0 and

(m1, ...,mr) ∈ MJ,s

⋂
i∈I

F−1
Di

(mi) ∩ π−1
0 (Uj) = π−1

k

(
(Uj ∩D◦

J)× Cd·k−∑
j∈J mj × (C∗)|J |

)

or empty. So

⋂
i∈I

F−1
Di

(mi) = π−1
k (C) with

[C] =
[
D◦

J × Cd·k−∑
j∈J mj × (C∗)|J |

]
= [D◦

J ] · Ld·k−∑
j∈J mj · (L− 1)|J |

hence

µ

(⋂
i∈I

F−1
Di

(mi)

)
= [D◦

J ] · L−
∑

j∈J mj · (L− 1)|J | · L−d

and with the disjoint partition (7) the claim follows.

Example 53 In the previous example D = D1 + D2 (i.e. a1 = a2 = 1) with
D1 ∩D2 = {P} and I = {1, 2}. So

µ
(
F−1

D (0)
)

= L−d · [Y \ (D1 ∪D2)]
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and for s ≥ 1:

µ
(
F−1

D (s)
)

= L−d · (
[D1\P ] · L−s · (L− 1) + (s− 1) · [P ] · L−s · (L− 1)2 + [D2\P ] · L−s · (L− 1))

corresponding to the diagonals in the picture

3.8 The completion of M [
L−1

]
and calculation of the

motivic integral

Remark 54 The map [−] : obVC →M is the universal map being additive
on disjoint unions of constructible sets and multiplicative on products, so any
other map E : obVC → R with the same properties factors through [−]. So
the universality of [−] gives a factorization of E : VC → Q [u, v] through the
Grothendieck ring

obVC E−→ Q [u, v]
[−] ↘ ↗ E

M
(which we will also denominate by E), so E (L) = E ([C]) = E (C) = uv.

E can be extended by E (L−1) := (uv)−1 to a map

E : M [
L−1

] → Q
[
u, v, (uv)−1]

Remark 55 Let´s first do the calculations to see the critical steps and then
give the completion R, where these calculations are well defined:

Our goal is to write the following expression (which in the case of resolu-
tions of singularities is the stringy E-function Est) as

∑
J⊂I

E (D◦
J ; u, v)

∏
j∈J

uv − 1

(uv)aj+1 − 1
= E

(∑
J⊂I

[D◦
J ]

∏
j∈J

L− 1

Laj+1 − 1

)
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and then express the argument of E as an integral by
∫

J∞(Y )

L−FDdµ :=
∑

s∈Z≥0∪{∞}
µ

(
F−1

D (s)
) · L−s =

∑
J⊂I

[D◦
J ]

∏
j∈J

L− 1

Laj+1 − 1
L−d

Check this calculation, using Proprosition (52):
∫

J∞(Y )

L−FDdµ =
∑

s∈Z≥0∪{∞}
µ

(
F−1

D (s)
) · L−s (10)

=
∑

s∈Z≥0

∑
J⊂I

∑
m∈MJ,s

[D◦
J ] · L−

∑
j∈J mj · (L− 1)|J | · L−d · L−s

=
∑

s∈Z≥0

∑
J⊂I

∑
m∈MJ,s

[D◦
J ] · (L− 1)|J | · L−

∑
j∈J (aj+1)mj · L−d

=
∑
J⊂I

[D◦
J ] · (L− 1)|J | ·

∑

s∈Z≥0

∑
m∈MJ,s

(∏
j∈J

L−(aj+1)mj

)
· L−d

=
∑
J⊂I

[D◦
J ] · (L− 1)|J | ·

∏
j∈J


 ∑

mj≥1

L−(aj+1)mj


 · L−d

=
∑
J⊂I

[D◦
J ] · (L− 1)|J | ·

∏
j∈J

1

Laj+1 − 1
· L−d

=
∑
J⊂I

[D◦
J ] ·

∏
j∈J

(L− 1)

Laj+1 − 1
· L−d

So we want to define a measure for a countable union of disjoint cylinder
sets by

µ




·⋃

j∈Z≥0

Cj


 =

∑

j∈Z≥0

µ (Cj)

but countable sums are not defined in M [L−1] so we have to pass to some
completion and also have to show, that the limit does not depend on the
order of summation.

Definition 56 We consider the completion R of M [L−1] with respect to the
filtration

Fm := FmM [
L−1

]
=

〈
[V ]L−j | j ≥ dim V + m

〉
for m ∈ Z

(so Fm+1 ⊂ Fm) and denote the completion map by

φ : M [
L−1

] → R
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The completion behaves somehow analogous to formal Laurent series.

Remark 57 The completion is constructed in the following way: For an ∈
M [L−1] we define

lim
n→∞

an = 0 ⇔ ∀ε ∈ Z ∃n0 ∈ N : an ∈ F ε ∀n ≥ n0

and

an is a Cauchy sequence ⇔ ∀ε ∃n0 : an − am ∈ F ε ∀n,m ≥ n0

Two Cauchy sequences an and bn are called equivalent, if an − bn is a null
sequence (i.e. limn→∞ an − bn = 0) and the set of equivalence classes is the
completion R. We have a well defined addition on R by (an)+(bn) = (an + bn)
and multiplication (an) · (bn) = (an · bn).

The completion map φ (a) = (a) sending a to the constant sequence (a)
is a ring homomorphism.

By definition a sequence (an) ⊂M [L−1] converges with limit value in R
iff it is a Cauchy sequence. The limit value is the sequence by itself.

For all ε1, ε2 ∈ Z
F ε1 · F ε2 ⊂ F ε1+ε2

Let´s first check that (an + bn) and (an · bn) are well defined:

• If an is a Cauchy sequence then an is bounded i.e. ∃ε ∈ Z s.t. an ∈ F ε

∀n ∈ N:

∃n0 : an − an0 ∈ F 0 ∀n ≥ n0 and ∃ε1 s.t. a0, ..., an0 ∈ F ε1 then
an ∈ Fmin{0,ε1} ∀n ≥ n0.

• For all ε1, ε2 ∈ Z we have F ε1 · F ε2 ⊂ F ε1+ε2 :

Let C1 ∈ F ε1 and C2 ∈ F ε2 , i.e. Ci = [Vi] · L−ji with ji ≥ dim Vi + εi

so C1 · C2 = [V1 × V2] · L−j and

j = j1 + j2 ≥ dim V1 + dim V2 + ε1 + ε2 = dim (V1 × V2) + ε1 + ε2

hence C1 · C2 ∈ F ε1+ε2 .

• If an and bn are Cauchy sequences then (an + bn) and (an · bn) are again
Cauchy sequences:

∀ε ∃n0 : an − am ∈ F ε ∀n,m ≥ n0 and equally n1 for bn. Then for
the sum

an+bn−(am + bm) =

∈F ε︷ ︸︸ ︷
(an − am)−

∈F ε︷ ︸︸ ︷
(bn − bm) ∈ F ε ∀n,m ≥ N = max {n0, n1}

29



For the product choose a fixed ε1 s.t. an, bn ∈ F ε1∀n. Then

anbn−ambm =
∈F ε1

an

∈F ε︷ ︸︸ ︷
(bn − bm)+

∈F ε1

an

∈F ε︷ ︸︸ ︷
(an − am) ∈ F ε+ε1 ∀n,m ≥ N = max {n0, n1}

Remark: Be aware that the ε1 can be negative. By choosing N big
enough we can absorb the ε1.

• If cn and dn are null sequences, then cn + dn is a null sequence.

∀ε ∃n0 : cn ∈ F ε and ∃n1 : dn ∈ F ε. Then cn + dn ∈ F ε ∀n ≥ N =
max {n0, n1} and cn · dn ∈ F 2ε ⊂ F ε ∀n ≥ N = max {n0, n1}.

• If an is a Cauchy sequence and cn is a null sequence then ancn is a null
sequence:

∃ε1 s.t. an ∈ F ε1 ∀n. So ∀ε ∃n0 : cn ∈ F ε hence ancn ∈ F ε+ε1 .

• If an, bn are Cauchy sequences and cn, dn null sequences, then

(an + cn) + (bn + dn) = (an + bn) +

is null sequence︷ ︸︸ ︷
(cn + dn)

(an + cn) · (bn + dn) = anbn +

is null sequence︷ ︸︸ ︷
cnbn + andn + cndn

Remark 58 For sequences an, bn ∈M [L−1] it holds:

1. limn→∞ an = 0 ⇔ ∑∞
n=1 an convergent.

2. If
∑∞

n=1 an is convergent and σ : N→ N bijective, then
∑∞

n=1 aσ(n) is
convergent and has the same limit value.

3. If
∑∞

n=1 an and
∑∞

n=1 bn are convergent, then

( ∞∑
n=1

an

)
·
( ∞∑

n=1

bn

)
=

∞∑
s=1

∑
n+m=s

anbm

1. ∀ε ∃n0 : an ∈ F ε ∀n ≥ n0 so
∑n2

n=n1
an ∈ F ε ∀n1, n2 ≥ n0 as F ε is

a group, hence the partial sum is a Cauchy sequence.

On the other hand if ∀ε ∈ Z ∃n0 ∈ N :
∑n2

n=n1
an ∈ F ε ∀n1, n2 ≥ n0

then in particular for n1 = n2 = n0 we have an0 ∈ F ε.
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2. Cauchy sequence + null sequence is a Cauchy sequence. So we have to
show, that this series differs from the first one only by a null sequence:

∀ε ∃n0 : an ∈ F ε ∀N ≥ n0. Take n1 s.t. {σ (0) , ..., σ (n1)} ⊃
{0, 1, ..., n0 − 1}. Then

∈F ε︷ ︸︸ ︷
m∑

n=1

aσ(n) −
n0−1∑
n=1

an −

∈F ε︷ ︸︸ ︷
m∑

n=n0

an ∈ F ε for all m ≥ n1

so the difference is indeed a null sequence.

3. ∀ε ∃n0 : an ∈ F ε ∀n ≥ n0 and similar n1 for (bn). Hence

DN :=

(
N∑

n=1

an

)
·
(

N∑
n=1

bn

)
−

N∑
s=1

∑
n+m=s

anbn =
∑

n,m≤N
n+m>N

anbn ∈ F ε ∀N ≥ max {n0, n1}

so limN→∞ DN = 0 i.e. the two sequences only differ by a null sequence.

Definition 59 So we can define a measure on





·⋃

j∈Z≥0

Cj | Cj disjoint cylinder sets with µ (Cj) → 0 for j →∞




by

µ




·⋃

j∈Z≥0

Cj


 =

∑

j∈Z≥0

µ (Cj) ∈ R

In the completion R the limit exists (because µ (Cj) is a null sequence) and
it is independent of the order of summation.

Definition 60 The motivic integral of the effective normal crossing divi-
sor D on the complex manifold Y is defined as:

∫

J∞(Y )

FDdµ :=

∫

J∞(Y )

L−FDdµ :=
∑

s∈Z≥0∪{∞}
µ

(
F−1

D (s)
) · L−s

Proposition 61 If D is an effective normal crossing divisor then FD is mea-
surable.
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Proof. We will see later, that µ
(
F−1

D (∞)
)

= 0, so we only have to show,
that µ

(
F−1

D (s)
) · L−s is a null sequence. Actually even µ

(
F−1

D (s)
)

is a null
sequence:

µ
(
F−1

D (s)
)

=
∑
J⊂I

∑
m∈MJ,s

[D◦
J ] · L−

∑
j∈J mj · (L− 1)|J | · L−d

For all J ⊂ I and m ∈ MJ,s

dim
(
[D◦

J ] · (L− 1)|J |
)

= d− |J |+ |J | = d

hence
(
[D◦

J ] · (L− 1)|J |
)
· L−

∑
j∈J mj−d ∈ F

∑
j∈J mj+d−d = F

∑
j∈J mj

So µ
(
F−1

D (s)
)

is a null sequence, because
∑

j∈J mj →∞ as s →∞ if D 6= 0
and if D = 0 then

µ
(
F−1

D (s)
)

=

{
[Y ] · L−d for s = 0
0 else

}

Now our claim follows with:

Lemma 62 µ
(
F−1

D (∞)
)

= 0.

Proof. Omitted.

Theorem 63 The motivic integral then evaluates as
∫

J∞(Y )

L−FDdµ =
∑
J⊂I

[D◦
J ]

∏
j∈J

L− 1

Laj+1 − 1
L−d

in particular ∫

J∞(Y )

L−F0dµ = [Y ] · L−d

So the motivic integral takes values in the subring

R′ = φ
(M [

L−1
])

[{
1

Lj − 1

}

j∈N

]
⊂ R

where we should think of (Lj − 1)
−1

as the corresponding power series ex-
pansion.
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Remark 64 Omitting the L−s factor in the sum leads to

∑

s∈Z≥0∪{∞}
µ

(
F−1

D (s)
)

=
∑
J⊂I

[D◦
J ]L−d = [Y ]L−d =

∫

J∞(Y )

L−F0dµ

for any effective normal crossing divisor D 6= 0 (see calculation (10)). Of
course the left hand side is µ (J∞ (Y )) and the right hand side can be inter-
preted as

∫
J∞(Y )

1dµ.

Proposition 65 The map

E : M [
L−1

] → Q
[
u, v, (uv)−1]

can be uniquely extended to a map

E : R′ → Q

[
u, v, (uv)−1 ,

{
1

(uv)j − 1

}

j∈N

]

by E
(

1
Lj−1

)
= 1

(uv)j−1
.

Proof. The kernel of the completion map

ker φ =
⋂

m∈Z
Fm

is annihilated by E: For a ∈ Fm it holds deg E (a) ≤ −2m, so for a ∈
ker φ, we have deg E (a) = −∞ i.e. E (a) = 0. Hence E factors through
φ (M [L−1]). Remark: It is unknown, whether ker φ = 0.

So by the previous calculation (10):

Remark 66 We have

∑
J⊂I

E (D◦
J ; u, v)

∏
j∈J

uv − 1

(uv)aj+1 − 1
= E

(∑
J⊂I

[D◦
J ]

∏
j∈J

L− 1

Laj+1 − 1

)
= E

(∫

J∞(Y )

L−FDdµLd

)

This in particular holds for the discrepancy divisor D of a resolution of sin-
gularities Y → X and gives Est (X) in this case.
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3.9 The transformation rule for the motivic integral

Theorem 67 (Transformation rule) Let X and Y be smooth and f :
X → Y a proper birational morphism and W = KY − f ∗KX the discrep-
ancy divisor (W = (det Jacf ) ≥ 0). Then

∫

J∞(Y )

FDdµ =

∫

J∞(X)

Ff∗D+W dµ (11)

Proof. We will only prove this for D = 0. The general proof is analogous.
For the sequence Ds = F−1

W (s) it holds µ (Ds) → 0 as s →∞ (see proof
of the existence of the motivic integral). For k ∈ Z∪{∞} we have maps

fk : Jk (X) → Jk (Y )
γx 7→ f ◦ γx ∈ Jk (Y )f(x)

which are bijective outside the set of zero measure F−1
W (∞), hence the se-

quence Cs = f∞ (Ds) is a partition of J∞ (Y ) up to a set of measure 0. By
a lemma (see below) we know that Ck is again a cylinder set and µ (Ds) =
µ (Cs) ·Ls in particular µ (Cs) = µ (Ds) ·L−s → 0. Hence

∑
s∈Z µ (Cs) exists

and equals µ (J∞ (Y )) = [Y ] =
∫

J∞(Y )
F0dµ. Putting all together we get

∫

J∞(Y )

F0dµ = µ (J∞ (Y )) =
∑

s∈Z
µ (Cs) =

∑

s∈Z
µ (Ds)L−s =

∫

J∞(X)

FW dµ

Lemma 68 For Ds = F−1
W (s) the set Cs = f∞ (Ds) is again a cylinder set

and
µ (Ds) = µ (Cs) · Ls

Proof. As shown above Ds is a cylinder set. So there is a k and a
constructible set B s.t. B is a k-basis of Ds. fk (B) is again constructible
(proof omitted) and for k ≥ s the following diagram commutes

Ds ⊂ J∞ (X)
f∞→ J∞ (Y ) ⊃ f∞ (Ds) = Cs

πk ↓ πk ↓
B ⊂ Jk (X)

fk→ Jk (Y ) ⊃ fk (B) = πk (f∞ (Ds))

We want to show that fk |B: B → fk (B) is bundle with fiber As.
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Let ψy ∈ πk (f∞ (Ds)) i.e. ψy = πk (f ◦ γx) with γx ∈ Ds. Locally ψy

is given by a d-tuple of polynomials of degree k, so writing the coefficient
vectors in the rows we get

ψy =




a1,0 · · · a1,k 0 · · ·
...

...
...

ad,0 · · · ad,k 0 · · ·




and its preimage by πk is

π−1
k (ψy) =

{
ψy + tk+1v | v ∈ C [[t]]d

}

=
{

f (γx) + tk+1v | v ∈ C [[t]]d
}

=




a1,0 · · · a1,k ∗ ∗ · · ·
...

...
...

ad,0 · · · ad,k ∗ ∗ · · ·




After a change of coordinates over C [[t]] we can assume, that the Jacobian
matrix Jf (ψy) has the form

Jacf (ψy) =




ts1

. . .

tsd




with s1 + ... + sd = s.
After Taylor expansion of f for u ∈ C [[t]]d

f (γx + u) = f ◦ γx + Jacf (γx) u + ...

hence f (γx + u) ∈ π−1
k (ψy) iff ord (tsjuj) > k i.e.

u =




0 · · · 0 u1,k+1−s1 · · · · · · · · · u1,k · · ·
...
0 · · · · · · · · · 0 ud,k+1−sd

· · · ud,k · · ·




so

f−1
∞

(
π−1

k (ψy)
)

=
{

γx + w | w ∈ C [[t]]d , ord (wi) ≥ k − si for i = 1, ..., d
}

Projecting to Jk (X) we get

πk

(
f−1
∞

(
π−1

k (ψy)
))

=
{

γx + w | w ∈ C [t]d , ord (wi) ≥ k − si, deg wi ≤ k for i = 1, ..., d
}
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i.e.

w =




0 · · · 0 u1,k+1−s1 · · · · · · · · · u1,k 0 · · ·
...
0 · · · · · · · · · 0 ud,k+1−sd

· · · ud,k 0 · · ·




and hence the fiber of πk in an affine space of dimension
∑d

i=1 si = s.
The etale bundle structure lifts again to a locally trivial bundle structure

in the Zariski topology.

4 Proof of the independence of Est from the

resolution

From now on let X be a normal projective d dimensional variety with at worst
Gorenstein canonical singularities, f : Y → X a resolution of singularities
for which the discrepancy divisor D = KY − f ∗KX =

∑r
i=1 aiDi has smooth

components D1, ..., Dr and only simple normal crossings. Let I = {1, ..., r}.

Theorem 69 (Independence of the motivic integral from the resolution)
Let fi : Yi → X, i = 1, 2 be two resolutions of X with discrepancies Di. Then

∫

J∞(Y1)

FD1dµ =

∫

J∞(Y2)

FD2dµ

In particular Est (X; u, v) = E
(∫

J∞(Y )
FDdµ · Ld

)
is independent of the

choice of resolution. The proof can be generalized to the case of X being
Q-Gorenstein.

Proof. Let h : Y → Y1 ×X Y2 be a resolution (by Hironaka´s theorem)
of the fiber product of Y1 and Y2 over X.

Y
h ↓

Y1 ×X Y2

pr1 ↙ ↘ pr2

Y1 Y2

f1 ↘ ↙ f2

X

Then we have proper birational morphisms hi = pri ◦ h : Y → Yi and
f0 := fi ◦ pri ◦ h : Y → X (independent of i because of the fiber product).
Denote the discrepancy of f0 by D0.
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In order to apply the transformation rule to lift the integral from Yi to
Y , we compute the discrepancies of the hi. Since

KY = f ∗0 KX + D0 = h∗i f
∗
i KX + D0 = h∗i (KYi

−Di) + D0

= h∗i KYi
+ (D0 − h∗i Di)

the discrepancies of the hi are

KY − h∗i KYi
= D0 − h∗i Di

By the transformation rule (11) we get∫

J∞(Yi)

FDi
dµ =

∫

J∞(Y )

Fh∗i Di+(D0−h∗i Di)dµ =

∫

J∞(Y )

FD0dµ

independent of i.

5 Birational Calabi-Yau manifolds have equal

Hodge numbers

Theorem 70 Birational Calabi-Yau manifolds have equal Hodge numbers.

Proof. Let X1 and X2 smooth Calabi-Yau manifolds and f : X1 99K X2

a birational map. Let d = dim X1 = dim X2. Factor f through the resolution
Y of the graph:

Y
f1 ↙ ↘ f2

X1 99K X2

with morphisms f1 and f2. Denote by Wi the discrepancy of fi, so because
KXi

= OXi

W := W1 = KY − f ∗1 KX1 = KY = KY − f ∗2 KX2 = W2

With the remark about the motivic integral of F0 and the transformation
rule (11) we get

[Xi] =

∫

J∞(Xi)

F0dµ · Ld =

∫

J∞(Y )

Ff∗i 0+Wi
dµ · Ld =

∫

J∞(Y )

FW dµ · Ld

so [X1] = [X2], hence

E (X1) = E ([X1]) = E ([X2]) = E (X2)

Remark 71 Actually we proved, that [X1] = [X2], i.e. X1 and X2 represent
the same class in R.
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