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@ Determining smoothness of algebraic varieties

@ Infrastructure for massively parallel computations: GPI-Space

SINGULAR and GPI-Space

Timings

More applications in

e geometric invariant theory
e tropical geometry.
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Smoothness of algebraic varieties - <(

Determining smoothness of algebraic varieties is a key task when
constructing new varieties (e.g. to study moduli spaces), since singularities
can change important invariants:
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Smoothness of algebraic varieties - <(

Determining smoothness of algebraic varieties is a key task when
constructing new varieties (e.g. to study moduli spaces), since singularities

can change important invariants:
Example (Toy example)
y2—x%(x+1)=0 Y = x2(x+1)+ =0

pe(C) =0 pe(C) =1

v
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Smoothness of algebraic varieties - <(

Determining smoothness of algebraic varieties is a key task when
constructing new varieties (e.g. to study moduli spaces), since singularities

can change important invariants:

Example (Toy example)
Y =x2(x+1)=0  y?—x*(x+1)+ 35 =0

pe(C) =0 pe(C) =1

according to the genus formula pg(C) = w — Y pecop(C).

v
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Smoothness of algebraic varieties

Theorem (Jacobian criterion)
Let K be perfect field, S = K[x1,...,xn|, | = (f,..., )

R=S5/1
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Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K[x1,...,xn|, | = (f,..., )

R=S/I
and P D | a prime ideal of S,
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Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K[x1,...,xn|, | = (f,..., )

R=S5/1

and P D | a prime ideal of S, let c be the codimension of Ip C Sp,

Janko Boehm (TU-KL)

Massively parallel methods in computer algebra

April 03, 208 2 /36



Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K[x1,...,xn|, | = (f,..., )

R=S/I
and P D | a prime ideal of S, let c be the codimension of Ip C Sp, and let

dfi/ox1 -+ 0f/dxs
J = : :
of /oxy -+ Of./dxy

be the Jacobian matrix.
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Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K[x1,...,xn|, | = (f,..., )

R=S/I
and P D | a prime ideal of S, let c be the codimension of Ip C Sp, and let

dfi/ox1 -+ 0f/dxs
j= . .

of /oxy -+ Of./dxy

be the Jacobian matrix. Then rank(J mod P) < ¢
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Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K[x1,...,xn|, | = (f,..., )

R=S/I
and P D | a prime ideal of S, let c be the codimension of Ip C Sp, and let

dfi/ox1 -+ 0f/dxs
j= . .

of /oxy -+ Of./dxy

be the Jacobian matrix. Then rank(J mod P) < c and Rp is a regular
local ring iff

rank(J mod P) = c.
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Smoothness of algebraic varieties - <(

Corollary

Let R be equidimensional,
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Corollary

Let R be equidimensional,
Sing(R) = {P € Spec(R) | Rp not regular}

its singular locus,
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Smoothness of algebraic varieties - <(

Corollary

Let R be equidimensional,
Sing(R) = {P € Spec(R) | Rp not regular}

its singular locus, and J = (minors. J) C R the Jacobian ideal.
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Smoothness of algebraic varieties - <(

Corollary

Let R be equidimensional,
Sing(R) = {P € Spec(R) | Rp not regular}
its singular locus, and J = (minorsc J) C R the Jacobian ideal. Then

Sing(R) = V(J)

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 3 /36



Smoothness of algebraic varieties - <(

Corollary

Let R be equidimensional,

Sing(R) = {P € Spec(R) | Rp not regular}
its singular locus, and J = (minorsc J) C R the Jacobian ideal. Then

Sing(R) = V(J).

Example

I=(2=x2(x+1)) 1=(2—x2(x+1) + %)

Sing(R) = V({x,y))  Sing(R) = V((1)) =9

v
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Smoothness of algebraic varieties

@ Jacobian criterion aims at computing the singular locus.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 4 /36



Smoothness of algebraic varieties

@ Jacobian criterion aims at computing the singular locus.
@ Expensive, especially if the size ¢ of the minors is large.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 4 /36



Smoothness of algebraic varieties - <(

@ Jacobian criterion aims at computing the singular locus.

o Expensive, especially if the size ¢ of the minors is large.
@ Determine non/smoothness without computing the Jacobian ideal?
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Smoothness of algebraic varieties - <(

@ Jacobian criterion aims at computing the singular locus.

o Expensive, especially if the size ¢ of the minors is large.
@ Determine non/smoothness without computing the Jacobian ideal?

Let K be a perfect field, X = Spec(A) C A", A= K|[xy...,xn|/I an
affine scheme. If p € X the (vanishing-)order of f € Ain p is

ordm, (f) :=sup{t € No | f € m[}}
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Smoothness of algebraic varieties

@ Jacobian criterion aims at computing the singular locus.
@ Expensive, especially if the size ¢ of the minors is large.
@ Determine non/smoothness without computing the Jacobian ideal?

Let K be a perfect field, X = Spec(A) C A", A= K|[x1...,xp|/I an
affine scheme. If p € X the (vanishing-)order of f € Ain p is

ordm, (f) :=sup{t € No | f € m[}}

Lemma (Hironaka, 1964)

If fi, ..., fs is a minimal standard basis of IO pn , sorted by increasing
order, then

v
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Smoothness of algebraic varieties

@ Jacobian criterion aims at computing the singular locus.

@ Expensive, especially if the size ¢ of the minors is large.

@ Determine non/smoothness without computing the Jacobian ideal?
Let K be a perfect field, X = Spec(A) C A", A= K|[x1...,xp|/I an
affine scheme. If p € X the (vanishing-)order of f € Ain p is

ordm, (f) :=sup{t € No | f € m[}}

Lemma (Hironaka, 1964)

If fi, ..., fs is a minimal standard basis of IO pn , sorted by increasing
order, then

v*(X, p) = (ordm,(f1),...,ordm,(f))
depends only on Ox ,, and X is singular at p if and only if

V(X p) Siex (1,01 1),
codim(X)

v
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Algorithmic smoothness criterion

Definition
For W C A" | C K[x1,...,%]/lw, and p € W define

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 5/ 36



Algorithmic smoothness criterion

Definition
For W C A" | C K[x1,...,%]/lw, and p € W define

ordy(/) :=sup{t € N [/ C mjy ,}.
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Algorithmic smoothness criterion - <(

For W C A" | C K[x1,...,%]/lw, and p € W define

ordy(/) :=sup{t € N [/ C mjy ,}.

v

Lemma

If W is a smooth complete intersection of codim s, X = V/(I) and

Xp =5 1... 1>2...
V( 1 ) ( 1 0o=p Z 1 )

S

hence X = V/(I) is not smooth at p.
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Algorithmic smoothness criterion - <(

For W C A" | C K[x1,...,%]/lw, and p € W define

ordy(/) :=sup{t € N [/ C mjy ,}.

v

Lemma

If W is a smooth complete intersection of codim s, X = V/(I) and
ord,(l) > 2 then
X,p)=(1,...,1,>2,...
vi(X.p) = ( >2,...)

S

hence X = V/(I) is not smooth at p.

v

Lemma

If {p € X |ord,(l) > 2} = @ then there is f € | defining locally in a
Zariski neighborhood of p a smooth hypersurface X C Z C W.

v
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Algorithmic smoothness criterion - <(

Lemma

If M is a s X s-submatrix of the Jacobian matrix of W with det(M) # 0,
then the x; not used for differentiation in M induce by translation a local
system of parameters X, ; at every point of p € W N D(det(M)). Write
0f; /09X, j for the partial derivatives defined in terms of the Cohen
structure theorem isomorphism

Ky, ---, Yn—s]] = O/W\,P

The partials 0f; /90X j can be represented for all p € D(det(M)) by fixed
elements H; j € Ow(D(det(M))), and we write

af;/ax, = H,"j
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Algorithmic smoothness criterion - <(

If M is a s X s-submatrix of the Jacobian matrix of W with det(M) # 0,
then the x; not used for differentiation in M induce by translation a local
system of parameters X, ; at every point of p € W N D(det(M)). Write
0f; /09X, j for the partial derivatives defined in terms of the Cohen
structure theorem isomorphism

Ky, ---, Yn—s]] = O/W\,P

The partials 0f; /90X j can be represented for all p € D(det(M)) by fixed
elements H; j € Ow(D(det(M))), and we write

af;/ax, = H,"j

Lemma
{p € X |ord,(l) > 2} is defined in X N D(det(M)) by
I+ (06i/3% | i.J)

v
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Algorithmic smoothness criterion = <

This allows us to iteratively describe an equidimensional X C A" locally
as a smooth complete intersection or recognize that X is not smooth:
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Algorithmic smoothness criterion - <(

This allows us to iteratively describe an equidimensional X C A" locally
as a smooth complete intersection or recognize that X is not smooth:

Let X = V(f,....,) CV(fh..., ) =W C A" where W is a complete
intersection, smooth in D(q) = {q # 0}.
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Algorithmic smoothness criterion - <(

This allows us to iteratively describe an equidimensional X C A" locally
as a smooth complete intersection or recognize that X is not smooth:

Let X = V(f,..., f,) CV(fh...,fg) =W C A" where W is a complete
intersection, smooth in D(q) = {q # 0}.
e Find a set L of s x s submatrices M of 7 (W) with det(M) # 0 and

(f,..., f,) + (det(M) | M € L) = (1)

Janko Boehm (TU-KL)

Massively parallel methods in computer algebra

April 03, 208 7 /36



Algorithmic smoothness criterion - <(

This allows us to iteratively describe an equidimensional X C A" locally
as a smooth complete intersection or recognize that X is not smooth:

Let X = V(f,..., f,) CV(fh...,fg) =W C A" where W is a complete
intersection, smooth in D(q) = {q # 0}.
e Find a set L of s X s submatrices M of 7 (W) with det(M) # 0 and

(f,..., fr) + (det(M) | M € L) = (1)

W.l.o.g. consider the first minor.
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Algorithmic smoothness criterion - <(

This allows us to iteratively describe an equidimensional X C A" locally
as a smooth complete intersection or recognize that X is not smooth:

Let X = V(f,..., f,) CV(fh...,fg) =W C A" where W is a complete
intersection, smooth in D(q) = {q # 0}.

e Find a set L of s X s submatrices M of 7 (W) with det(M) # 0 and

(f,..., fr) + (det(M) | M € L) = (1)
W.l.o.g. consider the first minor.

e Find A such that A- M = det(M) - E; and let
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Algorithmic smoothness criterion - <(

@ Then the locus of order > 2 in D(q) is empty iff

ge \/<f1,...,ﬁ,aF,/axj 1i,j>s)

where the dF;/0dX; can be computed as the entries of the right lower
block after the row reduction
det(M) 0 det(M) 0

J(F) = 0 .' det(M) i 0 ’ det(M) "
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Algorithmic smoothness criterion - <(

@ Then the locus of order > 2 in D(q) is empty iff

ge \/(fl,...,fr,E)F,'/an 1i,j>s)

where the dF;/0dX; can be computed as the entries of the right lower
block after the row reduction
det(M) 0 det(M) 0
F) = * *
JF) 0 det(M) 1 o det(M)
* ‘ * 0 ‘ *

@ If so, consider a representation

qm = ZDC,'J . aF,/a)g mod (f]_, ey fr>
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Algorithmic smoothness criterion - <(

@ Then the locus of order > 2 in D(q) is empty iff

g€/ (fi . £ 0F/3X i) > s)

where the dF;/0dX; can be computed as the entries of the right lower
block after the row reduction
det(M) 0 det(M) 0

*

J(F) = —

0  det(M)
* ‘ * 0 ‘ *

@ If so, consider a representation

qm = ZDC,'J . aF,/a)g mod (f]_, ey fr>

o Ifa;jj #0, on D(q-9F;/9X;) we can replace
(... fs) = (A,... s, F)
defining smooth c.i. W' D X with codim(W'’) = codim(W) + 1.
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Algorithmic smoothness criterion - <(

@ Then the locus of order > 2 in D(q) is empty iff

g€/ (fi . £ 0F/3X i) > s)

where the dF;/0dX; can be computed as the entries of the right lower
block after the row reduction
det(M) 0 det(M) 0

*

J(F)= —

0  det(M)
* ‘ * 0 ‘ *

@ If so, consider a representation

qm = ZDC,'J . aF,/a)g mod (f]_, ey fr>

o Ifa;jj #0, on D(q-9F;/9X;) we can replace
(... fs) = (A,... s, F)

defining smooth c.i. W' D X with codim(W'’) = codim(W) + 1.
o lteratively obtain tree of charts.
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GPI-Space =

o developed by Fraunhofer Institute for Industrial Mathematics ITWM
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GPI-Space

@ task based workflow management system for massively parallel
computations

v

agent-n...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
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GPI-Space

@ task based workflow management system for massively parallel
computations

v

agent-n...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...
delta-no...

@ based on idea of separating coordination and computation.
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Philosophy and Features of GPI-Space

@ Separate, specialized language for coordination layer (Petri nets).
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Philosophy and Features of GPI-Space

@ Separate, specialized language for coordination layer (Petri nets).

@ Implementations and optimizations in the coordination layer and
computational can be done by the respective experts.
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Philosophy and Features of GPI-Space

@ Separate, specialized language for coordination layer (Petri nets).

@ Implementations and optimizations in the coordination layer and
computational can be done by the respective experts.

@ Complex coordination hidden from domain experts: automatic
parallelization, cost optimized data transfers hiding latency,
adaptation to dynamic changes in the computing environment.
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Philosophy and Features of GPI-Space — <(

Sociable:

@ Legacy applications (e.g. SINGULAR) can be used without changes as
long as they can be called as a C-library.
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Sociable:

@ Legacy applications (e.g. SINGULAR) can be used without changes as
long as they can be called as a C-library.

o Arbitrary computational tools written by domain experts can be
mixed.
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Philosophy and Features of GPI-Space = <

Sociable:

@ Legacy applications (e.g. SINGULAR) can be used without changes as
long as they can be called as a C-library.

o Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

@ to scale computations beyond limitations of single machine.
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Philosophy and Features of GPI-Space = <

Sociable:

@ Legacy applications (e.g. SINGULAR) can be used without changes as
long as they can be called as a C-library.

o Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

@ to scale computations beyond limitations of single machine.

@ legacy applications to interoperate in an efficient way.
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Philosophy and Features of GPI-Space — <(

Sociable:

@ Legacy applications (e.g. SINGULAR) can be used without changes as
long as they can be called as a C-library.

o Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

@ to scale computations beyond limitations of single machine.
@ legacy applications to interoperate in an efficient way.

@ to switch between different types of memory without changing the
implementation.
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Structure and Implementation of GPI-Space

Three main components:

@ Distributed, scalable, resilient runtime system for dynamic
computational environments (from small to huge): manages
computational resources and memory. Scheduler assigns activities to

resources.

April 03, 208 12 / 36
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GPI-Space: Scheduler

‘gspc-monitor (on node012.beehive.itwm.fhg.de) voax

Execution Monitor | Logging

1130930 110942, 110954,

EAT00 112p38 12 1| add_colur

0]
1] remove
10
10
0

clear_acti

ssssssssssssszsso
|

<

srsssssfssssssssssssssssh
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Structure and Implementation of GPI-Space

Three main components:

o Distributed, scalable, resilient runtime system for huge dynamic
environments: manages memory and computational resources.
Scheduler assigns activities to resources w.r.t. both the needs of the
current computations and the overall optimization goals.
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Structure and Implementation of GPI-Space

Three main components:

o Distributed, scalable, resilient runtime system for huge dynamic
environments: manages memory and computational resources.
Scheduler assigns activities to resources w.r.t. both the needs of the
current computations and the overall optimization goals.

@ Virtual memory manager: allows algorithmic building blocks to
communicate, share partial results. Communication managed by the
runtime system rather than the domain applications.
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Structure and Implementation of GPI-Space — <(

Three main components:

o Distributed, scalable, resilient runtime system for huge dynamic
environments: manages memory and computational resources.
Scheduler assigns activities to resources w.r.t. both the needs of the
current computations and the overall optimization goals.

@ Virtual memory manager: allows algorithmic building blocks to
communicate, share partial results. Communication managed by the
runtime system rather than the domain applications.

@ Petri net based workflow engine: manages the full application state
and is responsible for automatic parallelization and dependency
tracking.
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Petri nets = <

Introduced by Carl Adam Petri (1926-2010) in 1962 to describe
concurrent asynchronous systems (this is how real world physics works!).

In fact he invented them already much earlier to remember chemical
reactions in school.

Janko Boehm (TU-KL)
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Petri nets = <

Petri nets are a graphical way to model algorithms: Consist out of places
and transitions. By a marking of places a state is described, if the
conditions of a transition are satisfied, it changes the state.
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EES = <(

Petri nets are a graphical way to model algorithms: Consist out of places
and transitions. By a marking of places a state is described, if the
conditions of a transition are satisfied, it changes the state.

Example

~ 8 SO OLlG

y off goes on on off goes on on
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<(

Petri nets are a graphical way to model algorithms: Consist out of places
and transitions. By a marking of places a state is described, if the
conditions of a transition are satisfied, it changes the state.

Petri nets

Example

¥ O OO

off goes on on off goes on on

April 03, 208 15 / 36
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Real world examples

Clock at time t = 4:
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Real world examples =

Assassin
has gun
Assassin
Assassin ads gun
pulls trigger

Firing pin

struck Gun

loaded
Somebody
Misfire unloads gun
Victim Victim shot i
alive unloaded

Victim dies

Victim dead

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208



Real world examples

Assigning a printer to two users:

R T A
TN T T
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Features of Petri nets —

@ Graphical, so accessible not only to experts in programming.
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Features of Petri nets — <

@ Graphical, so accessible not only to experts in programming.
@ Hierarchial, building blocks can again be Petri nets.
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Features of Petri nets

@ Graphical, so accessible not only to experts in programming.
@ Hierarchial, building blocks can again be Petri nets.

@ Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

@ Well suited for concurrent environments:
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Features of Petri nets

@ Grapbhical, so accessible not only to experts in programming.
@ Hierarchial, building blocks can again be Petri nets.

@ Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

@ Well suited for concurrent environments:

o Locality of dependencies (we know that idea?), no global events.
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Features of Petri nets

@ Grapbhical, so accessible not only to experts in programming.
@ Hierarchial, building blocks can again be Petri nets.

@ Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

@ Well suited for concurrent environments:

o Locality of dependencies (we know that idea?), no global events.

Onln®nlinG®
O, ] O

o Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.
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Features of Petri nets

@ Grapbhical, so accessible not only to experts in programming.
@ Hierarchial, building blocks can again be Petri nets.

@ Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

@ Well suited for concurrent environments:

o Locality of dependencies (we know that idea?), no global events.

Onln®nlinG®
O, ] O

o Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.

e Can add resources to running computations without any
synchronization.
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Features of Petri nets
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EES = <(

Definition

A Petri net is a triple (P, T, F) with finite, disjoint sets places P and
transitions 7. The flow function F: (P x T)U (T x P) — IN describes
interaction of places and transitions. We say that p is a predecessor of t
if F(p,t) >0, and that p is a sucessor of t if F(t, p) > 0.
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Definition

A Petri net is a triple (P, T, F) with finite, disjoint sets places P and
transitions 7. The flow function F: (P x T)U (T x P) — IN describes
interaction of places and transitions. We say that p is a predecessor of t
if F(p,t) >0, and that p is a sucessor of t if F(t, p) > 0.

The state of a Petri net is described by a so called marking M : P — IN.
If M(p) = k, we say p has k tokens under M.

We say that a marking M enables a transition t if the places have enough
tokens required by F, thatis Vp € P: M(p) > F(p, t).

A transition enabled by M can fire leading to the new marking

M'(p) = M(p) — F(p,t) + F(t, p).

To fire t consumes F(p, t) tokens from each predecessor p of t and
produces F(q, t) tokens on each sucessor g of t.
To execute a Petri net we randomly fire enabled transitions.
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Parallel computations =

@ Task parallelism:
Transitions f and g can fire in parallel:
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Parallel computations

@ Task parallelism:
Transitions f and g can fire in parallel:

o Data parallelism:
If i holds multiple tokens, t can fire in parallel:

Note:

@ Real world transitions take time.

o Tokens can be complex data structures.
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Singular and GPI-Space

Integration by Lukas Ristau:
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Singular and GPI-Space

Integration by Lukas Ristau:

@ SINGULAR calls GPI-Space.
@ GPI-Space uses LIBSINGULAR on the workers.

Singular

.

GPI-Space

Singular Singular Singular Singular
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Modelling the smoothness test

Petri net implementation of the smoothness test (L. Ristau) in short:

@ Run all charts occuring in the descent in codimension in parallel.
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Modelling the smoothness test

Petri net implementation of the smoothness test (L. Ristau) in short:

@ Run all charts occuring in the descent in codimension in parallel.

@ Charts leading to non/smoothness quickly win.
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Modelling the smoothness test

Petri net implementation of the smoothness test (L. Ristau) in short:
@ Run all charts occuring in the descent in codimension in parallel.
@ Charts leading to non/smoothness quickly win.

@ If one chart shows not smooth, return false.
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Modelling the smoothness test

Petri net implementation of the smoothness test (L. Ristau) in short:

Run all charts occuring in the descent in codimension in parallel.
Charts leading to non/smoothness quickly win.
If one chart shows not smooth, return false.

Once X is completely covered with charts U; C W s.t. XN U, is a
smooth complete intersection, return true.
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Application to Algorithms in Algebraic Geometry

@ Key concept in algebraic geometry:

e Description of schemes and sheaves in terms of coverings by charts.
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@ Key concept in algebraic geometry:
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o Global properties are related to local ones in the individual charts.

@ Use this natural parallel structure algorithmically?
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@ Computational basis of most algorithms is Buchberger's Algorithm.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 25 / 36



Application to Algorithms in Algebraic Geometry

@ Key concept in algebraic geometry:

e Description of schemes and sheaves in terms of coverings by charts.
o Global properties are related to local ones in the individual charts.

@ Use this natural parallel structure algorithmically?
@ Computational basis of most algorithms is Buchberger's Algorithm.

@ Buchberger’'s Algorithm has doubly exponential worst case complexity
[Mayr, Meyer 1982], much faster in many practical examples of
interest — unpredictable for parallelization (can parallelize individual
computations via modular and linear algebra methods).

@ — Single chart may dominate the run-time.

@ Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.
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Timings for Campedelli surface — <(

Campedelli surface of codim 5 with algebraic fundamental group Z/6:
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Timings for Campedelli surface

Campedelli surface of codim 5 with algebraic fundamental group Z/6:

2687
O

13514

11632 64 96 128 160 192 224 256
685

1/cores

356

Jacobian criterion takes 461sec.
18— ; - T = = -

116 32 64 9% 128 160 192 224 256

sec/cores
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Timings for Godeaux surface of codim 11

General type surface by Frank-Olaf Schreyer, Isabel Stenger.
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Timings for Godeaux surface of codim 11

General type surface by Frank-Olaf Schreyer, Isabel Stenger.
Superlinear speedup for small number of cores.
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Timings for Godeaux surface of codim 11

General type surface by Frank-Olaf Schreyer, Isabel Stenger.
Superlinear speedup for small number of cores.

53000

33000

12200

3100

16 32 64 128 256

Jacobian criterion does not finish.
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More Algorithms in Computer Algebra = <

Similar approach of choice of good cover for algorithmic resolution of
singularities.
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Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

o Computation of integration-by-parts identities for Feynman integrals
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Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

o Computation of integration-by-parts identities for Feynman integrals

@ Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity
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More Algorithms in Computer Algebra - <(

Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

o Computation of integration-by-parts identities for Feynman integrals

@ Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity

o Computation of

o GIT-fans,
o Grobner fans, and
e tropical varieties

with symmetry via a parallel fan traversal.
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Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.
o Computation of integration-by-parts identities for Feynman integrals

@ Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity

o Computation of

o GIT-fans,
o Grobner fans, and
e tropical varieties

with symmetry via a parallel fan traversal.

@ Computation of Grobner bases and syzygies.
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More Algorithms in Computer Algebra - <(

Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

o Computation of integration-by-parts identities for Feynman integrals
@ Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity
o Computation of
o GIT-fans,
o Grobner fans, and
e tropical varieties
with symmetry via a parallel fan traversal.
@ Computation of Grobner bases and syzygies.
@ Do you have more ideas?
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Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.
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Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

C*xC? —C? t-(x,y) = (tx, ty)
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Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example
C*xC? —C? t-(x,y) = (tx, ty)
U=C?
u//cr = {pt}

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 29 / 36



Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

C*xC? —C? t-(x,y) = (tx, ty)

U=C? U =c2\{0}

W
Z1

U//C* = {pt} U//C* = Pt
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GIT-Fan —

For torus actions on affine varieties V/(a), classify all possible quotients
(choices of open sets) in terms of a polyhedral fan, the GIT-fan.
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<(

For torus actions on affine varieties V(a), classify all possible quotients
(choices of open sets) in terms of a polyhedral fan, the GIT-fan.

For C*xC? — C?, t-(x,y)=(tx,ty), Q@=(1,1), a=0

U = C?
Uy = CQ\{O} Aa, Q) = @ >
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Symmetries = <(

Cl:<T1T3—T2T4>C]K[T1,...,T4] deg(Tj):qj
(C*)2-action on V/(a) given by

1 -1 -1 1
QZ(CIL---VCM):(l 1 1 _1>
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Symmetries = <(

Cl:<T1T3—T2T4>C]K[T1,...,T4] deg(Tj):qj
(C*)2-action on V/(a) given by

1 -1 -1 1
QZ(CIL---VCM):(l 1 1 _1>

T : T

G=Ds=1{(12)(34),(1,23,4)CSs 1

T T
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Symmetric GIT-Algorithm = <(

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Grobner bases with computations in
polyhedral geometry and group theory.
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Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Grobner bases with computations in
polyhedral geometry and group theory.

@ Each GIT-cone is an intersection of orbit cones.
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via a fan traversal, combining Grobner bases with computations in
polyhedral geometry and group theory.

@ Each GIT-cone is an intersection of orbit cones.

@ Determine all orbit cones via monomial containment tests.
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Symmetric GIT-Algorithm = <(

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Grobner bases with computations in
polyhedral geometry and group theory.

@ Each GIT-cone is an intersection of orbit cones.
@ Determine all orbit cones via monomial containment tests.

@ Traverse fan by passing through codim 1 faces to neighbours.
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Symmetric GIT-Algorithm = <(

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Grobner bases with computations in
polyhedral geometry and group theory.

Each GIT-cone is an intersection of orbit cones.

Determine all orbit cones via monomial containment tests.

Traverse fan by passing through codim 1 faces to neighbours.

Hash GIT-cones via the binary vector encoding which orbit cones
occur in the corresponding intersection. Hash interacts well with
symmetry group action.

@ Compute in each orbit only a single representative.
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GIT-fans of torus actions on affine varieties — <(

Cox ring of the moduli space of stable genus zero curves with 6 marked
points Mo ¢ is Z1®-graded, has 40 generators (Castravet, 2009),
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GIT-fans of torus actions on affine varieties — <(

Cox ring of the moduli space of stable genus zero curves with 6 marked

points Mg g is Z®-graded, has 40 generators (Castravet, 2009), 225
relations (Bernal Guillen, Maclagan, 2012),
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GIT-fans of torus actions on affine varieties — <(

Cox ring of the moduli space of stable genus zero curves with 6 marked
points Mg ¢ is Z10-graded, has 40 generators (Castravet, 2009), 225
relations (Bernal Guillen, Maclagan, 2012), and a natural Se-action.
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GIT-fans of torus actions on affine varieties — <(

Cox ring of the moduli space of stable genus zero curves with 6 marked
points Mg ¢ is Z10-graded, has 40 generators (Castravet, 2009), 225
relations (Bernal Guillen, Maclagan, 2012), and a natural Se-action.

Example

The GIT-fan decomposition of the moving cone Mov(Mgg) classifies all
small modifications (rational maps which are isomorphisms on open
subsets which have a complement of codimension > 2).

The moving cone Mov(Mg¢) has

176 512 225
GIT-cones of maximal dimension 16, which decompose into
249 605

orbits under the Sg-action. The cone with orbit length one is the
semiample cone (dual of Mori cone).
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Smaller example: GIT-fan for G(2,5)
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Timings and Scaling in GPI-Space for M ¢

Using the SINGULAR task model with 1 core 16 days, 16 cores 1 day.
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Timings and Scaling in GPI-Space for M ¢

Using the SINGULAR task model with 1 core 16 days, 16 cores 1 day.
Symmetric GIT-fan algorithm implemented by Christian Reinbold:

400+
512
444+
370+
337
268+
207+
1511
774
o 161
16 80 160 240 320 400 480 560 640
w25 1/cores
239+
12,54
16 80 160 240 320 400 480 560 640

min/cores
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Computing tropical varieties with symmetry

@ Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).
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Computing tropical varieties with symmetry

@ Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

o Newton-Puiseux
implementation by
Santiago Laplagne.
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Computing tropical varieties with symmetry

@ Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

o Newton-Puiseux
implementation by
Santiago Laplagne.

@ Use fan traversal by
Christian Reinbold.
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Computing tropical varieties with symmetry

@ Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

Newton-Puiseux
implementation by
Santiago Laplagne.

Use fan traversal by
Christian Reinbold.

Implementation of a
parallel and symmetric
algorithm for computing
tropical varieties by
Dominik Bendle.
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Computing tropical varieties with symmetry

o Algorithm to compute Example (Tropicalization of G(3, 8))
tropical links by obtaining e
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

o Newton-Puiseux
implementation by
Santiago Laplagne.

500 |-

a00

time [min]

@ Use fan traversal by
Christian Reinbold.

@ Implementation of a
parallel and symmetric
algorithm for computing
tropical varieties by
Dominik Bendle.
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