
Massively parallel methods in computer algebra

Janko Boehm
joint with Wolfram Decker, Anne Frühbis-Krüger,

Franz-Josef Pfreundt, Mirko Rahn, Lukas Ristau

Technische Universität Kaiserslautern

April 03, 2018

supported by

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 1 / 36



Outline

Determining smoothness of algebraic varieties

Infrastructure for massively parallel computations: GPI-Space

Singular and GPI-Space

Timings

More applications in

geometric invariant theory
tropical geometry.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 1 / 36



Outline

Determining smoothness of algebraic varieties

Infrastructure for massively parallel computations: GPI-Space

Singular and GPI-Space

Timings

More applications in

geometric invariant theory
tropical geometry.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 1 / 36



Outline

Determining smoothness of algebraic varieties

Infrastructure for massively parallel computations: GPI-Space

Singular and GPI-Space

Timings

More applications in

geometric invariant theory
tropical geometry.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 1 / 36



Outline

Determining smoothness of algebraic varieties

Infrastructure for massively parallel computations: GPI-Space

Singular and GPI-Space

Timings

More applications in

geometric invariant theory
tropical geometry.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 1 / 36



Smoothness of algebraic varieties

Determining smoothness of algebraic varieties is a key task when
constructing new varieties (e.g. to study moduli spaces), since singularities
can change important invariants:

Example (Toy example)

y2 − x2(x + 1) = 0 y2 − x2(x + 1) + 1
100 = 0

pg (C ) = 0 pg (C ) = 1

according to the genus formula pg (C ) =
(d−1)(d−2)

2 −∑P∈C δP(C ).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 1 / 36



Smoothness of algebraic varieties

Determining smoothness of algebraic varieties is a key task when
constructing new varieties (e.g. to study moduli spaces), since singularities
can change important invariants:

Example (Toy example)

y2 − x2(x + 1) = 0 y2 − x2(x + 1) + 1
100 = 0

pg (C ) = 0 pg (C ) = 1

according to the genus formula pg (C ) =
(d−1)(d−2)

2 −∑P∈C δP(C ).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 1 / 36



Smoothness of algebraic varieties

Determining smoothness of algebraic varieties is a key task when
constructing new varieties (e.g. to study moduli spaces), since singularities
can change important invariants:

Example (Toy example)

y2 − x2(x + 1) = 0 y2 − x2(x + 1) + 1
100 = 0

pg (C ) = 0 pg (C ) = 1

according to the genus formula pg (C ) =
(d−1)(d−2)

2 −∑P∈C δP(C ).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 1 / 36



Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K [x1, . . . , xn], I = 〈f1, . . . , fr 〉

R = S/I

and P ⊃ I a prime ideal of S, let c be the codimension of IP ⊂ SP , and let

J =

∂f1/∂x1 · · · ∂f1/∂xn
...

...
∂fr/∂x1 · · · ∂fr/∂xn


be the Jacobian matrix. Then rank(J modP) ≤ c and RP is a regular
local ring iff

rank(J modP) = c.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 2 / 36



Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K [x1, . . . , xn], I = 〈f1, . . . , fr 〉

R = S/I

and P ⊃ I a prime ideal of S,

let c be the codimension of IP ⊂ SP , and let

J =

∂f1/∂x1 · · · ∂f1/∂xn
...

...
∂fr/∂x1 · · · ∂fr/∂xn


be the Jacobian matrix. Then rank(J modP) ≤ c and RP is a regular
local ring iff

rank(J modP) = c.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 2 / 36



Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K [x1, . . . , xn], I = 〈f1, . . . , fr 〉

R = S/I

and P ⊃ I a prime ideal of S, let c be the codimension of IP ⊂ SP ,

and let

J =

∂f1/∂x1 · · · ∂f1/∂xn
...

...
∂fr/∂x1 · · · ∂fr/∂xn


be the Jacobian matrix. Then rank(J modP) ≤ c and RP is a regular
local ring iff

rank(J modP) = c.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 2 / 36



Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K [x1, . . . , xn], I = 〈f1, . . . , fr 〉

R = S/I

and P ⊃ I a prime ideal of S, let c be the codimension of IP ⊂ SP , and let

J =

∂f1/∂x1 · · · ∂f1/∂xn
...

...
∂fr/∂x1 · · · ∂fr/∂xn


be the Jacobian matrix.

Then rank(J modP) ≤ c and RP is a regular
local ring iff

rank(J modP) = c.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 2 / 36



Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K [x1, . . . , xn], I = 〈f1, . . . , fr 〉

R = S/I

and P ⊃ I a prime ideal of S, let c be the codimension of IP ⊂ SP , and let

J =

∂f1/∂x1 · · · ∂f1/∂xn
...

...
∂fr/∂x1 · · · ∂fr/∂xn


be the Jacobian matrix. Then rank(J modP) ≤ c

and RP is a regular
local ring iff

rank(J modP) = c.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 2 / 36



Smoothness of algebraic varieties

Theorem (Jacobian criterion)

Let K be perfect field, S = K [x1, . . . , xn], I = 〈f1, . . . , fr 〉

R = S/I

and P ⊃ I a prime ideal of S, let c be the codimension of IP ⊂ SP , and let

J =

∂f1/∂x1 · · · ∂f1/∂xn
...

...
∂fr/∂x1 · · · ∂fr/∂xn


be the Jacobian matrix. Then rank(J modP) ≤ c and RP is a regular
local ring iff

rank(J modP) = c.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 2 / 36



Smoothness of algebraic varieties

Corollary

Let R be equidimensional,

Sing(R) = {P ∈ Spec(R) | RP not regular}

its singular locus, and J = 〈minorsc J 〉 ⊂ R the Jacobian ideal. Then

Sing(R) = V (J).

Example

I =
〈
y2 − x2(x + 1)

〉
I =

〈
y2 − x2(x + 1) + 1

100

〉
Sing(R) = V (〈x , y〉) Sing(R) = V (〈1〉) = ∅

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 3 / 36



Smoothness of algebraic varieties

Corollary

Let R be equidimensional,

Sing(R) = {P ∈ Spec(R) | RP not regular}

its singular locus,

and J = 〈minorsc J 〉 ⊂ R the Jacobian ideal. Then

Sing(R) = V (J).

Example

I =
〈
y2 − x2(x + 1)

〉
I =

〈
y2 − x2(x + 1) + 1

100

〉
Sing(R) = V (〈x , y〉) Sing(R) = V (〈1〉) = ∅

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 3 / 36



Smoothness of algebraic varieties

Corollary

Let R be equidimensional,

Sing(R) = {P ∈ Spec(R) | RP not regular}

its singular locus, and J = 〈minorsc J 〉 ⊂ R the Jacobian ideal.

Then

Sing(R) = V (J).

Example

I =
〈
y2 − x2(x + 1)

〉
I =

〈
y2 − x2(x + 1) + 1

100

〉
Sing(R) = V (〈x , y〉) Sing(R) = V (〈1〉) = ∅

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 3 / 36



Smoothness of algebraic varieties

Corollary

Let R be equidimensional,

Sing(R) = {P ∈ Spec(R) | RP not regular}

its singular locus, and J = 〈minorsc J 〉 ⊂ R the Jacobian ideal. Then

Sing(R) = V (J)

.

Example

I =
〈
y2 − x2(x + 1)

〉
I =

〈
y2 − x2(x + 1) + 1

100

〉
Sing(R) = V (〈x , y〉) Sing(R) = V (〈1〉) = ∅

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 3 / 36



Smoothness of algebraic varieties

Corollary

Let R be equidimensional,

Sing(R) = {P ∈ Spec(R) | RP not regular}

its singular locus, and J = 〈minorsc J 〉 ⊂ R the Jacobian ideal. Then

Sing(R) = V (J).

Example

I =
〈
y2 − x2(x + 1)

〉
I =

〈
y2 − x2(x + 1) + 1

100

〉
Sing(R) = V (〈x , y〉) Sing(R) = V (〈1〉) = ∅

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 3 / 36



Smoothness of algebraic varieties

Jacobian criterion aims at computing the singular locus.

Expensive, especially if the size c of the minors is large.

Determine non/smoothness without computing the Jacobian ideal?

Let K be a perfect field, X = Spec(A) ⊂ An, A = K [x1 . . . , xn]/I an
affine scheme. If p ∈ X the (vanishing-)order of f ∈ A in p is

ordmp (f ) := sup{t ∈N0 | f ∈ mt
p}

Lemma (Hironaka, 1964)

If f1, ..., fs is a minimal standard basis of IOAn,p, sorted by increasing
order, then

ν∗(X , p) = (ordmp (f1), . . . , ordmp (fs))

depends only on OX ,p, and X is singular at p if and only if

ν∗(X , p) >lex (1, . . . , 1︸ ︷︷ ︸
codim(X )

).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 4 / 36



Smoothness of algebraic varieties

Jacobian criterion aims at computing the singular locus.

Expensive, especially if the size c of the minors is large.

Determine non/smoothness without computing the Jacobian ideal?

Let K be a perfect field, X = Spec(A) ⊂ An, A = K [x1 . . . , xn]/I an
affine scheme. If p ∈ X the (vanishing-)order of f ∈ A in p is

ordmp (f ) := sup{t ∈N0 | f ∈ mt
p}

Lemma (Hironaka, 1964)

If f1, ..., fs is a minimal standard basis of IOAn,p, sorted by increasing
order, then

ν∗(X , p) = (ordmp (f1), . . . , ordmp (fs))

depends only on OX ,p, and X is singular at p if and only if

ν∗(X , p) >lex (1, . . . , 1︸ ︷︷ ︸
codim(X )

).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 4 / 36



Smoothness of algebraic varieties

Jacobian criterion aims at computing the singular locus.

Expensive, especially if the size c of the minors is large.

Determine non/smoothness without computing the Jacobian ideal?

Let K be a perfect field, X = Spec(A) ⊂ An, A = K [x1 . . . , xn]/I an
affine scheme. If p ∈ X the (vanishing-)order of f ∈ A in p is

ordmp (f ) := sup{t ∈N0 | f ∈ mt
p}

Lemma (Hironaka, 1964)

If f1, ..., fs is a minimal standard basis of IOAn,p, sorted by increasing
order, then

ν∗(X , p) = (ordmp (f1), . . . , ordmp (fs))

depends only on OX ,p, and X is singular at p if and only if

ν∗(X , p) >lex (1, . . . , 1︸ ︷︷ ︸
codim(X )

).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 4 / 36



Smoothness of algebraic varieties

Jacobian criterion aims at computing the singular locus.

Expensive, especially if the size c of the minors is large.

Determine non/smoothness without computing the Jacobian ideal?

Let K be a perfect field, X = Spec(A) ⊂ An, A = K [x1 . . . , xn]/I an
affine scheme. If p ∈ X the (vanishing-)order of f ∈ A in p is

ordmp (f ) := sup{t ∈N0 | f ∈ mt
p}

Lemma (Hironaka, 1964)

If f1, ..., fs is a minimal standard basis of IOAn,p, sorted by increasing
order, then

ν∗(X , p) = (ordmp (f1), . . . , ordmp (fs))

depends only on OX ,p, and X is singular at p if and only if

ν∗(X , p) >lex (1, . . . , 1︸ ︷︷ ︸
codim(X )

).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 4 / 36



Smoothness of algebraic varieties

Jacobian criterion aims at computing the singular locus.

Expensive, especially if the size c of the minors is large.

Determine non/smoothness without computing the Jacobian ideal?

Let K be a perfect field, X = Spec(A) ⊂ An, A = K [x1 . . . , xn]/I an
affine scheme. If p ∈ X the (vanishing-)order of f ∈ A in p is

ordmp (f ) := sup{t ∈N0 | f ∈ mt
p}

Lemma (Hironaka, 1964)

If f1, ..., fs is a minimal standard basis of IOAn,p, sorted by increasing
order, then

ν∗(X , p) = (ordmp (f1), . . . , ordmp (fs))

depends only on OX ,p, and X is singular at p if and only if

ν∗(X , p) >lex (1, . . . , 1︸ ︷︷ ︸
codim(X )

).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 4 / 36



Smoothness of algebraic varieties

Jacobian criterion aims at computing the singular locus.

Expensive, especially if the size c of the minors is large.

Determine non/smoothness without computing the Jacobian ideal?

Let K be a perfect field, X = Spec(A) ⊂ An, A = K [x1 . . . , xn]/I an
affine scheme. If p ∈ X the (vanishing-)order of f ∈ A in p is

ordmp (f ) := sup{t ∈N0 | f ∈ mt
p}

Lemma (Hironaka, 1964)

If f1, ..., fs is a minimal standard basis of IOAn,p, sorted by increasing
order, then

ν∗(X , p) = (ordmp (f1), . . . , ordmp (fs))

depends only on OX ,p, and X is singular at p if and only if

ν∗(X , p) >lex (1, . . . , 1︸ ︷︷ ︸
codim(X )

).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 4 / 36



Algorithmic smoothness criterion

Definition

For W ⊆ An, I ⊂ K [x1, . . . , xn]/IW , and p ∈ W define

ordp(I ) := sup{t ∈N | I ⊆ mt
W ,p}.

Lemma

If W is a smooth complete intersection of codim s, X = V (I ) and
ordp(I ) ≥ 2 then

ν∗(X , p) = (1, . . . , 1︸ ︷︷ ︸
s

,≥ 2, . . .)

hence X = V (I ) is not smooth at p.

Lemma

If {p ∈ X | ordp(I ) ≥ 2} = ∅ then there is f ∈ I defining locally in a
Zariski neighborhood of p a smooth hypersurface X ⊂ Z ⊂ W.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 5 / 36



Algorithmic smoothness criterion

Definition

For W ⊆ An, I ⊂ K [x1, . . . , xn]/IW , and p ∈ W define

ordp(I ) := sup{t ∈N | I ⊆ mt
W ,p}.

Lemma

If W is a smooth complete intersection of codim s, X = V (I ) and
ordp(I ) ≥ 2 then

ν∗(X , p) = (1, . . . , 1︸ ︷︷ ︸
s

,≥ 2, . . .)

hence X = V (I ) is not smooth at p.

Lemma

If {p ∈ X | ordp(I ) ≥ 2} = ∅ then there is f ∈ I defining locally in a
Zariski neighborhood of p a smooth hypersurface X ⊂ Z ⊂ W.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 5 / 36



Algorithmic smoothness criterion

Definition

For W ⊆ An, I ⊂ K [x1, . . . , xn]/IW , and p ∈ W define

ordp(I ) := sup{t ∈N | I ⊆ mt
W ,p}.

Lemma

If W is a smooth complete intersection of codim s, X = V (I ) and
ordp(I ) ≥ 2 then

ν∗(X , p) = (1, . . . , 1︸ ︷︷ ︸
s

,≥ 2, . . .)

hence X = V (I ) is not smooth at p.

Lemma

If {p ∈ X | ordp(I ) ≥ 2} = ∅ then there is f ∈ I defining locally in a
Zariski neighborhood of p a smooth hypersurface X ⊂ Z ⊂ W.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 5 / 36



Algorithmic smoothness criterion

Definition

For W ⊆ An, I ⊂ K [x1, . . . , xn]/IW , and p ∈ W define

ordp(I ) := sup{t ∈N | I ⊆ mt
W ,p}.

Lemma

If W is a smooth complete intersection of codim s, X = V (I ) and
ordp(I ) ≥ 2 then

ν∗(X , p) = (1, . . . , 1︸ ︷︷ ︸
s

,≥ 2, . . .)

hence X = V (I ) is not smooth at p.

Lemma

If {p ∈ X | ordp(I ) ≥ 2} = ∅ then there is f ∈ I defining locally in a
Zariski neighborhood of p a smooth hypersurface X ⊂ Z ⊂ W.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 5 / 36



Algorithmic smoothness criterion

Lemma

If M is a s × s-submatrix of the Jacobian matrix of W with det(M) 6= 0,
then the xi not used for differentiation in M induce by translation a local
system of parameters Xp,j at every point of p ∈ W ∩D(det(M)). Write
∂fi/∂Xp,j for the partial derivatives defined in terms of the Cohen
structure theorem isomorphism

K [[y1, . . . , yn−s ]] ∼= ÔW ,p

The partials ∂fi/∂Xp,j can be represented for all p ∈ D(det(M)) by fixed
elements Hi ,j ∈ OW (D(det(M))), and we write

∂fi/∂Xj := Hi ,j

.

Lemma

{p ∈ X | ordp(I ) ≥ 2} is defined in X ∩D(det(M)) by

I + 〈∂fi/∂Xj | i , j〉

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 6 / 36



Algorithmic smoothness criterion

Lemma

If M is a s × s-submatrix of the Jacobian matrix of W with det(M) 6= 0,
then the xi not used for differentiation in M induce by translation a local
system of parameters Xp,j at every point of p ∈ W ∩D(det(M)). Write
∂fi/∂Xp,j for the partial derivatives defined in terms of the Cohen
structure theorem isomorphism

K [[y1, . . . , yn−s ]] ∼= ÔW ,p

The partials ∂fi/∂Xp,j can be represented for all p ∈ D(det(M)) by fixed
elements Hi ,j ∈ OW (D(det(M))), and we write

∂fi/∂Xj := Hi ,j

.
Lemma

{p ∈ X | ordp(I ) ≥ 2} is defined in X ∩D(det(M)) by

I + 〈∂fi/∂Xj | i , j〉
Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 6 / 36



Algorithmic smoothness criterion

This allows us to iteratively describe an equidimensional X ⊂ An locally
as a smooth complete intersection or recognize that X is not smooth:

Let X = V (f1, . . . , fr ) ⊂ V (f1 . . . , fs) = W ⊂ An where W is a complete
intersection, smooth in D(q) = {q 6= 0}.

Find a set L of s × s submatrices M ofJ (W ) with det(M) 6= 0 and

〈f1, . . . , fr 〉+ 〈det(M) | M ∈ L〉 = 〈1〉

W.l.o.g. consider the first minor.

Find A such that A ·M = det(M) · Es and let

F :=
(
A 0
0 det(M) · Er−s

)
·

 f1
...
fr



Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 7 / 36



Algorithmic smoothness criterion

This allows us to iteratively describe an equidimensional X ⊂ An locally
as a smooth complete intersection or recognize that X is not smooth:
Let X = V (f1, . . . , fr ) ⊂ V (f1 . . . , fs) = W ⊂ An where W is a complete
intersection, smooth in D(q) = {q 6= 0}.

Find a set L of s × s submatrices M ofJ (W ) with det(M) 6= 0 and

〈f1, . . . , fr 〉+ 〈det(M) | M ∈ L〉 = 〈1〉

W.l.o.g. consider the first minor.

Find A such that A ·M = det(M) · Es and let

F :=
(
A 0
0 det(M) · Er−s

)
·

 f1
...
fr



Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 7 / 36



Algorithmic smoothness criterion

This allows us to iteratively describe an equidimensional X ⊂ An locally
as a smooth complete intersection or recognize that X is not smooth:
Let X = V (f1, . . . , fr ) ⊂ V (f1 . . . , fs) = W ⊂ An where W is a complete
intersection, smooth in D(q) = {q 6= 0}.

Find a set L of s × s submatrices M ofJ (W ) with det(M) 6= 0 and

〈f1, . . . , fr 〉+ 〈det(M) | M ∈ L〉 = 〈1〉

W.l.o.g. consider the first minor.

Find A such that A ·M = det(M) · Es and let

F :=
(
A 0
0 det(M) · Er−s

)
·

 f1
...
fr



Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 7 / 36



Algorithmic smoothness criterion

This allows us to iteratively describe an equidimensional X ⊂ An locally
as a smooth complete intersection or recognize that X is not smooth:
Let X = V (f1, . . . , fr ) ⊂ V (f1 . . . , fs) = W ⊂ An where W is a complete
intersection, smooth in D(q) = {q 6= 0}.

Find a set L of s × s submatrices M ofJ (W ) with det(M) 6= 0 and

〈f1, . . . , fr 〉+ 〈det(M) | M ∈ L〉 = 〈1〉

W.l.o.g. consider the first minor.

Find A such that A ·M = det(M) · Es and let

F :=
(
A 0
0 det(M) · Er−s

)
·

 f1
...
fr



Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 7 / 36



Algorithmic smoothness criterion

This allows us to iteratively describe an equidimensional X ⊂ An locally
as a smooth complete intersection or recognize that X is not smooth:
Let X = V (f1, . . . , fr ) ⊂ V (f1 . . . , fs) = W ⊂ An where W is a complete
intersection, smooth in D(q) = {q 6= 0}.

Find a set L of s × s submatrices M ofJ (W ) with det(M) 6= 0 and

〈f1, . . . , fr 〉+ 〈det(M) | M ∈ L〉 = 〈1〉

W.l.o.g. consider the first minor.

Find A such that A ·M = det(M) · Es and let

F :=
(
A 0
0 det(M) · Er−s

)
·

 f1
...
fr



Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 7 / 36



Algorithmic smoothness criterion

Then the locus of order ≥ 2 in D(q) is empty iff

q ∈
√
〈f1, . . . , fr , ∂Fi/∂Xj | i , j > s〉

where the ∂Fi/∂Xj can be computed as the entries of the right lower
block after the row reduction

J (F ) =


det(M) 0

. . . ∗
0 det(M)

∗ ∗

 7→


det(M) 0
. . . ∗

0 det(M)
0 ∗



If so, consider a representation

qm = ∑ αi ,j · ∂Fi/∂Xj mod 〈f1, . . . , fr 〉

If αi ,j 6= 0, on D(q · ∂Fi/∂Xj ) we can replace

(f1, . . . , fs) 7→ (f1, . . . , fs ,Fi )

defining smooth c.i. W ′ ⊃ X with codim(W ′) = codim(W ) + 1.
Iteratively obtain tree of charts.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 8 / 36



Algorithmic smoothness criterion

Then the locus of order ≥ 2 in D(q) is empty iff

q ∈
√
〈f1, . . . , fr , ∂Fi/∂Xj | i , j > s〉

where the ∂Fi/∂Xj can be computed as the entries of the right lower
block after the row reduction

J (F ) =


det(M) 0

. . . ∗
0 det(M)

∗ ∗

 7→


det(M) 0
. . . ∗

0 det(M)
0 ∗


If so, consider a representation

qm = ∑ αi ,j · ∂Fi/∂Xj mod 〈f1, . . . , fr 〉

If αi ,j 6= 0, on D(q · ∂Fi/∂Xj ) we can replace

(f1, . . . , fs) 7→ (f1, . . . , fs ,Fi )

defining smooth c.i. W ′ ⊃ X with codim(W ′) = codim(W ) + 1.
Iteratively obtain tree of charts.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 8 / 36



Algorithmic smoothness criterion

Then the locus of order ≥ 2 in D(q) is empty iff

q ∈
√
〈f1, . . . , fr , ∂Fi/∂Xj | i , j > s〉

where the ∂Fi/∂Xj can be computed as the entries of the right lower
block after the row reduction

J (F ) =


det(M) 0

. . . ∗
0 det(M)

∗ ∗

 7→


det(M) 0
. . . ∗

0 det(M)
0 ∗


If so, consider a representation

qm = ∑ αi ,j · ∂Fi/∂Xj mod 〈f1, . . . , fr 〉

If αi ,j 6= 0, on D(q · ∂Fi/∂Xj ) we can replace

(f1, . . . , fs) 7→ (f1, . . . , fs ,Fi )

defining smooth c.i. W ′ ⊃ X with codim(W ′) = codim(W ) + 1.

Iteratively obtain tree of charts.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 8 / 36



Algorithmic smoothness criterion

Then the locus of order ≥ 2 in D(q) is empty iff

q ∈
√
〈f1, . . . , fr , ∂Fi/∂Xj | i , j > s〉

where the ∂Fi/∂Xj can be computed as the entries of the right lower
block after the row reduction

J (F ) =


det(M) 0

. . . ∗
0 det(M)

∗ ∗

 7→


det(M) 0
. . . ∗

0 det(M)
0 ∗


If so, consider a representation

qm = ∑ αi ,j · ∂Fi/∂Xj mod 〈f1, . . . , fr 〉

If αi ,j 6= 0, on D(q · ∂Fi/∂Xj ) we can replace

(f1, . . . , fs) 7→ (f1, . . . , fs ,Fi )

defining smooth c.i. W ′ ⊃ X with codim(W ′) = codim(W ) + 1.
Iteratively obtain tree of charts.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 8 / 36



GPI-Space

developed by Fraunhofer Institute for Industrial Mathematics ITWM

task based workflow management system for massively parallel
computations

based on idea of separating coordination and computation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 9 / 36



GPI-Space

developed by Fraunhofer Institute for Industrial Mathematics ITWM

task based workflow management system for massively parallel
computations

based on idea of separating coordination and computation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 9 / 36



GPI-Space

developed by Fraunhofer Institute for Industrial Mathematics ITWM

task based workflow management system for massively parallel
computations

based on idea of separating coordination and computation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 9 / 36



Philosophy and Features of GPI-Space

Separate, specialized language for coordination layer (Petri nets).

Implementations and optimizations in the coordination layer and
computational can be done by the respective experts.

Complex coordination hidden from domain experts: automatic
parallelization, cost optimized data transfers hiding latency,
adaptation to dynamic changes in the computing environment.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 10 / 36



Philosophy and Features of GPI-Space

Separate, specialized language for coordination layer (Petri nets).

Implementations and optimizations in the coordination layer and
computational can be done by the respective experts.

Complex coordination hidden from domain experts: automatic
parallelization, cost optimized data transfers hiding latency,
adaptation to dynamic changes in the computing environment.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 10 / 36



Philosophy and Features of GPI-Space

Separate, specialized language for coordination layer (Petri nets).

Implementations and optimizations in the coordination layer and
computational can be done by the respective experts.

Complex coordination hidden from domain experts: automatic
parallelization, cost optimized data transfers hiding latency,
adaptation to dynamic changes in the computing environment.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 10 / 36



Philosophy and Features of GPI-Space

Sociable:

Legacy applications (e.g. Singular) can be used without changes as
long as they can be called as a C-library.

Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

to scale computations beyond limitations of single machine.

legacy applications to interoperate in an efficient way.

to switch between different types of memory without changing the
implementation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 11 / 36



Philosophy and Features of GPI-Space

Sociable:

Legacy applications (e.g. Singular) can be used without changes as
long as they can be called as a C-library.

Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

to scale computations beyond limitations of single machine.

legacy applications to interoperate in an efficient way.

to switch between different types of memory without changing the
implementation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 11 / 36



Philosophy and Features of GPI-Space

Sociable:

Legacy applications (e.g. Singular) can be used without changes as
long as they can be called as a C-library.

Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

to scale computations beyond limitations of single machine.

legacy applications to interoperate in an efficient way.

to switch between different types of memory without changing the
implementation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 11 / 36



Philosophy and Features of GPI-Space

Sociable:

Legacy applications (e.g. Singular) can be used without changes as
long as they can be called as a C-library.

Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

to scale computations beyond limitations of single machine.

legacy applications to interoperate in an efficient way.

to switch between different types of memory without changing the
implementation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 11 / 36



Philosophy and Features of GPI-Space

Sociable:

Legacy applications (e.g. Singular) can be used without changes as
long as they can be called as a C-library.

Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

to scale computations beyond limitations of single machine.

legacy applications to interoperate in an efficient way.

to switch between different types of memory without changing the
implementation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 11 / 36



Philosophy and Features of GPI-Space

Sociable:

Legacy applications (e.g. Singular) can be used without changes as
long as they can be called as a C-library.

Arbitrary computational tools written by domain experts can be
mixed.

Virtual memory layer allows

to scale computations beyond limitations of single machine.

legacy applications to interoperate in an efficient way.

to switch between different types of memory without changing the
implementation.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 11 / 36



Structure and Implementation of GPI-Space

Three main components:

Distributed, scalable, resilient runtime system for dynamic
computational environments (from small to huge): manages
computational resources and memory. Scheduler assigns activities to
resources.
Petri net based workflow engine: manages the full application state
and is responsible for automatic parallelization and dependency
tracking.
Virtual memory manager: allows algorithmic building blocks to
communicate, share partial results.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 12 / 36



GPI-Space: Scheduler

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 12 / 36



Structure and Implementation of GPI-Space

Three main components:

Distributed, scalable, resilient runtime system for huge dynamic
environments: manages memory and computational resources.
Scheduler assigns activities to resources w.r.t. both the needs of the
current computations and the overall optimization goals.

Virtual memory manager: allows algorithmic building blocks to
communicate, share partial results. Communication managed by the
runtime system rather than the domain applications.

Petri net based workflow engine: manages the full application state
and is responsible for automatic parallelization and dependency
tracking.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 13 / 36



Structure and Implementation of GPI-Space

Three main components:

Distributed, scalable, resilient runtime system for huge dynamic
environments: manages memory and computational resources.
Scheduler assigns activities to resources w.r.t. both the needs of the
current computations and the overall optimization goals.

Virtual memory manager: allows algorithmic building blocks to
communicate, share partial results. Communication managed by the
runtime system rather than the domain applications.

Petri net based workflow engine: manages the full application state
and is responsible for automatic parallelization and dependency
tracking.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 13 / 36



Structure and Implementation of GPI-Space

Three main components:

Distributed, scalable, resilient runtime system for huge dynamic
environments: manages memory and computational resources.
Scheduler assigns activities to resources w.r.t. both the needs of the
current computations and the overall optimization goals.

Virtual memory manager: allows algorithmic building blocks to
communicate, share partial results. Communication managed by the
runtime system rather than the domain applications.

Petri net based workflow engine: manages the full application state
and is responsible for automatic parallelization and dependency
tracking.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 13 / 36



Petri nets

Introduced by Carl Adam Petri (1926–2010) in 1962 to describe
concurrent asynchronous systems (this is how real world physics works!).
In fact he invented them already much earlier to remember chemical
reactions in school.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 14 / 36



Petri nets

Petri nets are a graphical way to model algorithms: Consist out of places
and transitions. By a marking of places a state is described, if the
conditions of a transition are satisfied, it changes the state.

Example

•
off goes on on off goes on

•
on

Example

•

•

•

•

•

not active

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 15 / 36



Petri nets

Petri nets are a graphical way to model algorithms: Consist out of places
and transitions. By a marking of places a state is described, if the
conditions of a transition are satisfied, it changes the state.

Example

•
off goes on on off goes on

•
on

Example

•

•

•

•

•

not active

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 15 / 36



Petri nets

Petri nets are a graphical way to model algorithms: Consist out of places
and transitions. By a marking of places a state is described, if the
conditions of a transition are satisfied, it changes the state.

Example

•
off goes on on off goes on

•
on

Example

•

•

•

•

•

not active

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 15 / 36



Real world examples

Clock at time t = 4:

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 16 / 36



Real world examples

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 17 / 36



Real world examples

Assigning a printer to two users:

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 18 / 36



Features of Petri nets

Graphical, so accessible not only to experts in programming.

Hierarchial, building blocks can again be Petri nets.

Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

Well suited for concurrent environments:

Locality of dependencies (we know that idea?), no global events.

•

•

Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.
Can add resources to running computations without any
synchronization.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 19 / 36



Features of Petri nets

Graphical, so accessible not only to experts in programming.

Hierarchial, building blocks can again be Petri nets.

Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

Well suited for concurrent environments:

Locality of dependencies (we know that idea?), no global events.

•

•

Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.
Can add resources to running computations without any
synchronization.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 19 / 36



Features of Petri nets

Graphical, so accessible not only to experts in programming.

Hierarchial, building blocks can again be Petri nets.

Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

Well suited for concurrent environments:

Locality of dependencies (we know that idea?), no global events.

•

•

Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.
Can add resources to running computations without any
synchronization.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 19 / 36



Features of Petri nets

Graphical, so accessible not only to experts in programming.

Hierarchial, building blocks can again be Petri nets.

Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

Well suited for concurrent environments:

Locality of dependencies (we know that idea?), no global events.

•

•

Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.
Can add resources to running computations without any
synchronization.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 19 / 36



Features of Petri nets

Graphical, so accessible not only to experts in programming.

Hierarchial, building blocks can again be Petri nets.

Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

Well suited for concurrent environments:

Locality of dependencies (we know that idea?), no global events.

•

•

Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.
Can add resources to running computations without any
synchronization.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 19 / 36



Features of Petri nets

Graphical, so accessible not only to experts in programming.

Hierarchial, building blocks can again be Petri nets.

Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

Well suited for concurrent environments:

Locality of dependencies (we know that idea?), no global events.

•

•

Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.

Can add resources to running computations without any
synchronization.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 19 / 36



Features of Petri nets

Graphical, so accessible not only to experts in programming.

Hierarchial, building blocks can again be Petri nets.

Resembles mathematical thinking, functional/declarative
programming, in contrast to imperative programming (what in
contrast to how).

Well suited for concurrent environments:

Locality of dependencies (we know that idea?), no global events.

•

•

Reversible, can compute backwards (a key idea in physics), can
recompute in case of a loss of a result.
Can add resources to running computations without any
synchronization.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 19 / 36



Features of Petri nets

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 20 / 36



Petri nets

Definition

A Petri net is a triple (P,T ,F ) with finite, disjoint sets places P and
transitions T . The flow function F : (P × T )∪ (T × P)→N describes
interaction of places and transitions. We say that p is a predecessor of t
if F (p, t) > 0, and that p is a sucessor of t if F (t, p) > 0.

The state of a Petri net is described by a so called marking M : P →N.
If M(p) = k, we say p has k tokens under M.
We say that a marking M enables a transition t if the places have enough
tokens required by F , that is ∀p ∈ P : M(p) ≥ F (p, t).
A transition enabled by M can fire leading to the new marking
M ′(p) = M(p)− F (p, t) + F (t, p).

To fire t consumes F (p, t) tokens from each predecessor p of t and
produces F (q, t) tokens on each sucessor q of t.
To execute a Petri net we randomly fire enabled transitions.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 21 / 36



Petri nets

Definition

A Petri net is a triple (P,T ,F ) with finite, disjoint sets places P and
transitions T . The flow function F : (P × T )∪ (T × P)→N describes
interaction of places and transitions. We say that p is a predecessor of t
if F (p, t) > 0, and that p is a sucessor of t if F (t, p) > 0.
The state of a Petri net is described by a so called marking M : P →N.
If M(p) = k, we say p has k tokens under M.

We say that a marking M enables a transition t if the places have enough
tokens required by F , that is ∀p ∈ P : M(p) ≥ F (p, t).
A transition enabled by M can fire leading to the new marking
M ′(p) = M(p)− F (p, t) + F (t, p).

To fire t consumes F (p, t) tokens from each predecessor p of t and
produces F (q, t) tokens on each sucessor q of t.
To execute a Petri net we randomly fire enabled transitions.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 21 / 36



Petri nets

Definition

A Petri net is a triple (P,T ,F ) with finite, disjoint sets places P and
transitions T . The flow function F : (P × T )∪ (T × P)→N describes
interaction of places and transitions. We say that p is a predecessor of t
if F (p, t) > 0, and that p is a sucessor of t if F (t, p) > 0.
The state of a Petri net is described by a so called marking M : P →N.
If M(p) = k, we say p has k tokens under M.
We say that a marking M enables a transition t if the places have enough
tokens required by F , that is ∀p ∈ P : M(p) ≥ F (p, t).

A transition enabled by M can fire leading to the new marking
M ′(p) = M(p)− F (p, t) + F (t, p).

To fire t consumes F (p, t) tokens from each predecessor p of t and
produces F (q, t) tokens on each sucessor q of t.
To execute a Petri net we randomly fire enabled transitions.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 21 / 36



Petri nets

Definition

A Petri net is a triple (P,T ,F ) with finite, disjoint sets places P and
transitions T . The flow function F : (P × T )∪ (T × P)→N describes
interaction of places and transitions. We say that p is a predecessor of t
if F (p, t) > 0, and that p is a sucessor of t if F (t, p) > 0.
The state of a Petri net is described by a so called marking M : P →N.
If M(p) = k, we say p has k tokens under M.
We say that a marking M enables a transition t if the places have enough
tokens required by F , that is ∀p ∈ P : M(p) ≥ F (p, t).
A transition enabled by M can fire leading to the new marking
M ′(p) = M(p)− F (p, t) + F (t, p).

To fire t consumes F (p, t) tokens from each predecessor p of t and
produces F (q, t) tokens on each sucessor q of t.
To execute a Petri net we randomly fire enabled transitions.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 21 / 36



Parallel computations

Task parallelism:
Transitions f and g can fire in parallel:

i s

f

g

l

r

j

Data parallelism:
If i holds multiple tokens, t can fire in parallel:

i t

Note:

Real world transitions take time.

Tokens can be complex data structures.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 22 / 36



Parallel computations

Task parallelism:
Transitions f and g can fire in parallel:

i s

f

g

l

r

j

Data parallelism:
If i holds multiple tokens, t can fire in parallel:

i t

Note:

Real world transitions take time.

Tokens can be complex data structures.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 22 / 36



Singular and GPI-Space

Integration by Lukas Ristau:

Singular calls GPI-Space.

GPI-Space uses libsingular on the workers.

Singular

GPI-Space

Singular Singular Singular ... Singular

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 23 / 36



Singular and GPI-Space

Integration by Lukas Ristau:

Singular calls GPI-Space.

GPI-Space uses libsingular on the workers.

Singular

GPI-Space

Singular Singular Singular ... Singular

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 23 / 36



Modelling the smoothness test

Petri net implementation of the smoothness test (L. Ristau) in short:

Run all charts occuring in the descent in codimension in parallel.

Charts leading to non/smoothness quickly win.

If one chart shows not smooth, return false.

Once X is completely covered with charts Ui ⊂ W s.t. X ∩Ui is a
smooth complete intersection, return true.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 24 / 36



Modelling the smoothness test

Petri net implementation of the smoothness test (L. Ristau) in short:

Run all charts occuring in the descent in codimension in parallel.

Charts leading to non/smoothness quickly win.

If one chart shows not smooth, return false.

Once X is completely covered with charts Ui ⊂ W s.t. X ∩Ui is a
smooth complete intersection, return true.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 24 / 36



Modelling the smoothness test

Petri net implementation of the smoothness test (L. Ristau) in short:

Run all charts occuring in the descent in codimension in parallel.

Charts leading to non/smoothness quickly win.

If one chart shows not smooth, return false.

Once X is completely covered with charts Ui ⊂ W s.t. X ∩Ui is a
smooth complete intersection, return true.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 24 / 36



Modelling the smoothness test

Petri net implementation of the smoothness test (L. Ristau) in short:

Run all charts occuring in the descent in codimension in parallel.

Charts leading to non/smoothness quickly win.

If one chart shows not smooth, return false.

Once X is completely covered with charts Ui ⊂ W s.t. X ∩Ui is a
smooth complete intersection, return true.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 24 / 36



Application to Algorithms in Algebraic Geometry

Key concept in algebraic geometry:

Description of schemes and sheaves in terms of coverings by charts.

Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger’s Algorithm.

Buchberger’s Algorithm has doubly exponential worst case complexity
[Mayr, Meyer 1982], much faster in many practical examples of
interest → unpredictable for parallelization (can parallelize individual
computations via modular and linear algebra methods).

→ Single chart may dominate the run-time.

Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 25 / 36



Application to Algorithms in Algebraic Geometry

Key concept in algebraic geometry:

Description of schemes and sheaves in terms of coverings by charts.
Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger’s Algorithm.

Buchberger’s Algorithm has doubly exponential worst case complexity
[Mayr, Meyer 1982], much faster in many practical examples of
interest → unpredictable for parallelization (can parallelize individual
computations via modular and linear algebra methods).

→ Single chart may dominate the run-time.

Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 25 / 36



Application to Algorithms in Algebraic Geometry

Key concept in algebraic geometry:

Description of schemes and sheaves in terms of coverings by charts.
Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger’s Algorithm.

Buchberger’s Algorithm has doubly exponential worst case complexity
[Mayr, Meyer 1982], much faster in many practical examples of
interest → unpredictable for parallelization (can parallelize individual
computations via modular and linear algebra methods).

→ Single chart may dominate the run-time.

Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 25 / 36



Application to Algorithms in Algebraic Geometry

Key concept in algebraic geometry:

Description of schemes and sheaves in terms of coverings by charts.
Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger’s Algorithm.

Buchberger’s Algorithm has doubly exponential worst case complexity
[Mayr, Meyer 1982], much faster in many practical examples of
interest → unpredictable for parallelization (can parallelize individual
computations via modular and linear algebra methods).

→ Single chart may dominate the run-time.

Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 25 / 36



Application to Algorithms in Algebraic Geometry

Key concept in algebraic geometry:

Description of schemes and sheaves in terms of coverings by charts.
Global properties are related to local ones in the individual charts.

Use this natural parallel structure algorithmically?

Computational basis of most algorithms is Buchberger’s Algorithm.

Buchberger’s Algorithm has doubly exponential worst case complexity
[Mayr, Meyer 1982], much faster in many practical examples of
interest → unpredictable for parallelization (can parallelize individual
computations via modular and linear algebra methods).

→ Single chart may dominate the run-time.

Solution: Model algorithm in a parallel way s.t. it automatically finds
a good cover.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 25 / 36



Timings for Campedelli surface

Campedelli surface of codim 5 with algebraic fundamental group Z/6:

2687

1351

685

356

18
1 16 32 64 96 128 160 192 224 256

sec/cores

20

40

60

80

100

120

140

160

1 16 32 64 96 128 160 192 224 256

1/cores

Jacobian criterion takes 461sec.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 26 / 36



Timings for Campedelli surface

Campedelli surface of codim 5 with algebraic fundamental group Z/6:
2687

1351

685

356

18
1 16 32 64 96 128 160 192 224 256

sec/cores

20

40

60

80

100

120

140

160

1 16 32 64 96 128 160 192 224 256

1/cores

Jacobian criterion takes 461sec.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 26 / 36



Timings for Godeaux surface of codim 11

General type surface by Frank-Olaf Schreyer, Isabel Stenger.

Superlinear speedup for small number of cores.

53000

33000

12200

3100

16 32 64 128 256

Jacobian criterion does not finish.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 27 / 36



Timings for Godeaux surface of codim 11

General type surface by Frank-Olaf Schreyer, Isabel Stenger.
Superlinear speedup for small number of cores.

53000

33000

12200

3100

16 32 64 128 256

Jacobian criterion does not finish.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 27 / 36



Timings for Godeaux surface of codim 11

General type surface by Frank-Olaf Schreyer, Isabel Stenger.
Superlinear speedup for small number of cores.

53000

33000

12200

3100

16 32 64 128 256

Jacobian criterion does not finish.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 27 / 36



More Algorithms in Computer Algebra

Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

Computation of integration-by-parts identities for Feynman integrals

Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity

Computation of

GIT-fans,
Gröbner fans, and
tropical varieties

with symmetry via a parallel fan traversal.

Computation of Gröbner bases and syzygies.

Do you have more ideas?

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 28 / 36



More Algorithms in Computer Algebra

Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

Computation of integration-by-parts identities for Feynman integrals

Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity

Computation of

GIT-fans,
Gröbner fans, and
tropical varieties

with symmetry via a parallel fan traversal.

Computation of Gröbner bases and syzygies.

Do you have more ideas?

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 28 / 36



More Algorithms in Computer Algebra

Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

Computation of integration-by-parts identities for Feynman integrals

Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity

Computation of

GIT-fans,
Gröbner fans, and
tropical varieties

with symmetry via a parallel fan traversal.

Computation of Gröbner bases and syzygies.

Do you have more ideas?

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 28 / 36



More Algorithms in Computer Algebra

Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

Computation of integration-by-parts identities for Feynman integrals

Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity

Computation of

GIT-fans,
Gröbner fans, and
tropical varieties

with symmetry via a parallel fan traversal.

Computation of Gröbner bases and syzygies.

Do you have more ideas?

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 28 / 36



More Algorithms in Computer Algebra

Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

Computation of integration-by-parts identities for Feynman integrals

Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity

Computation of

GIT-fans,
Gröbner fans, and
tropical varieties

with symmetry via a parallel fan traversal.

Computation of Gröbner bases and syzygies.

Do you have more ideas?

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 28 / 36



More Algorithms in Computer Algebra

Similar approach of choice of good cover for algorithmic resolution of
singularities.

General framework applicable to many more algorithmic problems in
computer algebra.

Computation of integration-by-parts identities for Feynman integrals

Computation of generating functions for Hurwitz numbers via
Feynman integrals to test quasimodularity

Computation of

GIT-fans,
Gröbner fans, and
tropical varieties

with symmetry via a parallel fan traversal.

Computation of Gröbner bases and syzygies.

Do you have more ideas?

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 28 / 36



Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 29 / 36



Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 29 / 36



Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 29 / 36



Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 29 / 36



GIT-Fan

For torus actions on affine varieties V (a), classify all possible quotients
(choices of open sets) in terms of a polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty), Q = (1, 1), a = 0

U1 = C2

U2 = C2\{0} Λ(a,Q) =

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 30 / 36



GIT-Fan

For torus actions on affine varieties V (a), classify all possible quotients
(choices of open sets) in terms of a polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty), Q = (1, 1), a = 0

U1 = C2

U2 = C2\{0} Λ(a,Q) =

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 30 / 36



GIT-Fan

For torus actions on affine varieties V (a), classify all possible quotients
(choices of open sets) in terms of a polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty), Q = (1, 1), a = 0

U1 = C2

U2 = C2\{0} Λ(a,Q) =

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 30 / 36



Symmetries

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj ) = qj

(C∗)2-action on V (a) given by

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 31 / 36



Symmetries

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj ) = qj

(C∗)2-action on V (a) given by

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 31 / 36



Symmetric GIT-Algorithm

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Gröbner bases with computations in
polyhedral geometry and group theory.

Each GIT-cone is an intersection of orbit cones.

Determine all orbit cones via monomial containment tests.

Traverse fan by passing through codim 1 faces to neighbours.

Hash GIT-cones via the binary vector encoding which orbit cones
occur in the corresponding intersection. Hash interacts well with
symmetry group action.

Compute in each orbit only a single representative.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 32 / 36



Symmetric GIT-Algorithm

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Gröbner bases with computations in
polyhedral geometry and group theory.

Each GIT-cone is an intersection of orbit cones.

Determine all orbit cones via monomial containment tests.

Traverse fan by passing through codim 1 faces to neighbours.

Hash GIT-cones via the binary vector encoding which orbit cones
occur in the corresponding intersection. Hash interacts well with
symmetry group action.

Compute in each orbit only a single representative.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 32 / 36



Symmetric GIT-Algorithm

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Gröbner bases with computations in
polyhedral geometry and group theory.

Each GIT-cone is an intersection of orbit cones.

Determine all orbit cones via monomial containment tests.

Traverse fan by passing through codim 1 faces to neighbours.

Hash GIT-cones via the binary vector encoding which orbit cones
occur in the corresponding intersection. Hash interacts well with
symmetry group action.

Compute in each orbit only a single representative.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 32 / 36



Symmetric GIT-Algorithm

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Gröbner bases with computations in
polyhedral geometry and group theory.

Each GIT-cone is an intersection of orbit cones.

Determine all orbit cones via monomial containment tests.

Traverse fan by passing through codim 1 faces to neighbours.

Hash GIT-cones via the binary vector encoding which orbit cones
occur in the corresponding intersection. Hash interacts well with
symmetry group action.

Compute in each orbit only a single representative.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 32 / 36



Symmetric GIT-Algorithm

Algorithm to compute GIT-fans with symmetries (B., Keicher, Ren, 2016)
via a fan traversal, combining Gröbner bases with computations in
polyhedral geometry and group theory.

Each GIT-cone is an intersection of orbit cones.

Determine all orbit cones via monomial containment tests.

Traverse fan by passing through codim 1 faces to neighbours.

Hash GIT-cones via the binary vector encoding which orbit cones
occur in the corresponding intersection. Hash interacts well with
symmetry group action.

Compute in each orbit only a single representative.

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 32 / 36



GIT-fans of torus actions on affine varieties

Cox ring of the moduli space of stable genus zero curves with 6 marked
points M0,6 is Z16-graded, has 40 generators (Castravet, 2009),

225
relations (Bernal Guillen, Maclagan, 2012), and a natural S6-action.

Example

The GIT-fan decomposition of the moving cone Mov(M0,6) classifies all
small modifications (rational maps which are isomorphisms on open
subsets which have a complement of codimension ≥ 2).
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action. The cone with orbit length one is the
semiample cone (dual of Mori cone).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 33 / 36



GIT-fans of torus actions on affine varieties

Cox ring of the moduli space of stable genus zero curves with 6 marked
points M0,6 is Z16-graded, has 40 generators (Castravet, 2009), 225
relations (Bernal Guillen, Maclagan, 2012),

and a natural S6-action.

Example

The GIT-fan decomposition of the moving cone Mov(M0,6) classifies all
small modifications (rational maps which are isomorphisms on open
subsets which have a complement of codimension ≥ 2).
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action. The cone with orbit length one is the
semiample cone (dual of Mori cone).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 33 / 36



GIT-fans of torus actions on affine varieties

Cox ring of the moduli space of stable genus zero curves with 6 marked
points M0,6 is Z16-graded, has 40 generators (Castravet, 2009), 225
relations (Bernal Guillen, Maclagan, 2012), and a natural S6-action.

Example

The GIT-fan decomposition of the moving cone Mov(M0,6) classifies all
small modifications (rational maps which are isomorphisms on open
subsets which have a complement of codimension ≥ 2).
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action. The cone with orbit length one is the
semiample cone (dual of Mori cone).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 33 / 36



GIT-fans of torus actions on affine varieties

Cox ring of the moduli space of stable genus zero curves with 6 marked
points M0,6 is Z16-graded, has 40 generators (Castravet, 2009), 225
relations (Bernal Guillen, Maclagan, 2012), and a natural S6-action.

Example

The GIT-fan decomposition of the moving cone Mov(M0,6) classifies all
small modifications (rational maps which are isomorphisms on open
subsets which have a complement of codimension ≥ 2).
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action. The cone with orbit length one is the
semiample cone (dual of Mori cone).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 33 / 36



Smaller example: GIT-fan for G(2, 5)

Adjacency graph of the maximal-dimensional GIT-cones and their orbits:

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 34 / 36



Timings and Scaling in GPI-Space for M0,6

Using the Singular task model with 1 core 16 days, 16 cores 1 day.

Symmetric GIT-fan algorithm implemented by Christian Reinbold:
400

83

42.5

23.9
12.5

16 80 160 240 320 400 480 560 640

min/cores

16

77

151

207

268

337
370

444

512

16 80 160 240 320 400 480 560 640

1/cores

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 35 / 36



Timings and Scaling in GPI-Space for M0,6

Using the Singular task model with 1 core 16 days, 16 cores 1 day.
Symmetric GIT-fan algorithm implemented by Christian Reinbold:

400

83

42.5

23.9
12.5

16 80 160 240 320 400 480 560 640

min/cores

16

77

151

207

268

337
370

444

512

16 80 160 240 320 400 480 560 640

1/cores

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 35 / 36



Computing tropical varieties with symmetry

Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

Newton-Puiseux
implementation by
Santiago Laplagne.

Use fan traversal by
Christian Reinbold.

Implementation of a
parallel and symmetric
algorithm for computing
tropical varieties by
Dominik Bendle.

Example (Tropicalization of G(3, 8))

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 36 / 36



Computing tropical varieties with symmetry

Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

Newton-Puiseux
implementation by
Santiago Laplagne.

Use fan traversal by
Christian Reinbold.

Implementation of a
parallel and symmetric
algorithm for computing
tropical varieties by
Dominik Bendle.

Example (Tropicalization of G(3, 8))

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 36 / 36



Computing tropical varieties with symmetry

Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

Newton-Puiseux
implementation by
Santiago Laplagne.

Use fan traversal by
Christian Reinbold.

Implementation of a
parallel and symmetric
algorithm for computing
tropical varieties by
Dominik Bendle.

Example (Tropicalization of G(3, 8))

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 36 / 36



Computing tropical varieties with symmetry

Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

Newton-Puiseux
implementation by
Santiago Laplagne.

Use fan traversal by
Christian Reinbold.

Implementation of a
parallel and symmetric
algorithm for computing
tropical varieties by
Dominik Bendle.

Example (Tropicalization of G(3, 8))

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 36 / 36



Computing tropical varieties with symmetry

Algorithm to compute
tropical links by obtaining
valuations via Puiseux
expansions (Tommy
Hofmann, Yue Ren, 2016).

Newton-Puiseux
implementation by
Santiago Laplagne.

Use fan traversal by
Christian Reinbold.

Implementation of a
parallel and symmetric
algorithm for computing
tropical varieties by
Dominik Bendle.

Example (Tropicalization of G(3, 8))

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 36 / 36



References

H. Hironaka. Resolution of singularities of an algebraic variety over a
field of characteristic zero. I, II. Ann. of Math. (1964).

J. Boehm and A. Frühbis-Krüger. A smoothness test for higher
codimension. J. Symb. Comput. (2017).

F.-J. Pfreundt and M. Rahn: GPI-space, Fraunhofer ITWM
Kaiserslautern, http://www.gpi-space.de/.

I. V. Dolgachev and Y. Hu. Variation of geometric invariant theory
quotients. Publ. Math., Inst. Hautes Etud. Sci. (1998).

J. Boehm, S. Keicher, Y. Ren. Computing GIT-fans with symmetry
and the Mori chamber decomposition of M0,6, arXiv:1603.09241
(2016).

T. Hofmann, Y. Ren. Computing tropical points and tropical links.
arXiv:1611.02878 (2016).

Janko Boehm (TU-KL) Massively parallel methods in computer algebra April 03, 208 36 / 36

http://www.gpi-space.de/
https://arxiv.org/abs/1603.09241
https://arxiv.org/abs/1611.02878

	Applications



