Mathematik für Informatiker Algebraische Strukturen Übungsblatt 11

Abgabetermin Samstag, den 27.01.2024, 23:59 Uhr in OpenOlat.

1. Der öffentliche RSA-Schlüssel von Alice ist

 $n_A = 186444745729857899758373984272541398503249351... \\ ... 266417000699738642133172271283265124803102459 \\ e_A = 2^{16} + 1$

Bob hat eine verschlüsselte Nachricht

 $c = 118065177034178781019606499196610289078537937... \\ 154386810449387818970058015262198321770177073$

an Alice geschickt. Was war der Inhalt der Nachricht?

Hinweise: Alice hat ungeschickterweise einen Primfaktor p von $n_A = p \cdot q$ so gewählt, dass $\varphi(p)$ nur Primpotenzfaktoren ≤ 200000 hat.

Verwenden Sie ein Verfahren, um $a^b \mod n$ für $a, b, n \in \mathbb{N}$ effizient berechnen, in MAPLE etwa durch

Testen Sie, ob auch Faktorisierungsroutinen in Computeralgebrasystemen zum Ziel führen, etwa die Maple-Funktion ifactor.

2. Seien $a, b, n \in \mathbb{N}$ und

$$b = b_0 2^0 + b_1 2^1 + b_2 2^2 + \dots$$

mit $b_i \in \{0, 1\}$ die Darstellung von b als Binärzahl.

(a) Beschreiben Sie ein effizientes Verfahren zu Berechnung von

$$a^b \bmod n$$

durch sukzessives Quadrieren.

- (b) Implementieren Sie Ihr Verfahren (auch in Form von Pseudocode) und testen Sie Ihre Implementierung an Beispielen.
- 3. (a) Bestimmen Sie die Additionstabelle und Multiplikationstabelle des Körpers $\mathbb{Z}/5$.
 - (b) Finden Sie über $\mathbb{Z}/5$ die Lösungsmenge des Gleichungssystems

$$x_1 + \overline{2}x_2 + \overline{3}x_3 = 0$$

$$\overline{2}x_1 + \overline{3}x_2 + \overline{4}x_3 = 0$$

$$\overline{3}x_1 + \overline{4}x_2 + \overline{0}x_3 = 0$$

4. Finden Sie das eindeutige Polynom $f \in \mathbb{R}[x]$ von Grad deg $f \leq 3$ mit

$$f(-2) = 0$$
 $f(0) = 1$ $f(1) = 0$ $f(4) = 0$

und zeichnen Sie den Funktionsgraphen.

Hinweis: Verwenden Sie den Ansatz

$$f = x_1 t^3 + x_2 t^2 + x_3 t + x_4 \in \mathbb{R}[t]$$

und ersetzen Sie die obigen Bedingungen an f durch

$$f(-2) = 0$$
 $f(0) = x_5$ $f(1) = 0$ $f(4) = 0$.

5. (4 Zusatzpunkte) Der Fermatsche Primzahltest: $n \in \mathbb{N}$ heißt Fermatsche Pseudoprimzahl zur Basis a, wenn n nicht prim ist, aber dennoch wie für Primzahlen

$$a^{n-1} \equiv 1 \bmod n$$

gilt. Bestimmen Sie mit Computerhilfe jeweils alle Pseudoprimzahlen $n \leq 1000$ zur Basis a mit a=2,5,7. Wieviele Zahlen $n \leq 1000$ würden Sie anhand aller durchgeführten Tests fälschlicherweise für prim halten?

Hinweis: Sie können z.B. die Maple-Funktionen nextprime und mod verwenden.