Mathematik für Informatiker Algebraische Strukturen Übungsblatt 1

Abgabetermin Samstag, den 04.10.2022 bis 23:59 in OpenOlat.

1. Zeigen Sie, dass für jedes $n \in \mathbb{N}$ die Zahl

$$n^{3} + 2n$$

durch 3 teilbar ist.

2. Eine logische Formel verknüpft gegebene Aussagen zu einer neuen Aussage.

- (a) Für eine Aussage A ist die **Negation** $\neg A$ (**nicht** A) wahr wenn A falsch ist, und falsch, wenn A wahr ist. Für Aussagen A und B ist die **Konjunktion** $A \wedge B$ (A und B) wahr, wenn beide Aussagen wahr sind, und falsch sonst.
- (b) Die **Disjunktion** $A \vee B$ (A oder B) ist wahr, wenn mindestens eine der beiden Aussagen wahr ist, und falsch sonst.
- (c) Die **Implikation** $A \Rightarrow B$ ist falsch, wenn A wahr und B falsch ist. Anderenfalls ist sie wahr.

Eine logische Formel kann man eindeutig festlegen, indem man für alle möglichen Werte der gegebenen Aussagen die Werte der abgeleitenen Aussage mit einer sogenannten **Wahrheitswerttafel** angibt. Ordnen Sie die oben definierten logischen Operationen jeweils einer der folgenden Wahrheitswerttafeln zu:

A	B	??	A	B	??		A	B	??			
1	1	1	1	1	1	=	1	1	1	•	A	??
0	1	1	0	1	1	-	0	1	0		1	0
1	0	0	1	0	1	-	1	0	0		0	1
0	0	1	0	0	0	-	0	0	0			

- 3. Für zwei Aussagen A und B ist die Äquivalenz $A \Leftrightarrow B$ wahr, wenn $A \Rightarrow B$ und $B \Rightarrow A$ wahr sind. Anderenfalls ist die Äquivalenz falsch. Stellen Sie die Wahrheitswerttabelle von $A \Leftrightarrow B$ auf.
- 4. Zeigen Sie mit Hilfe von Wahrheitswerttafeln, dass für Aussagen A, B und C die folgenden Aussagen immer wahr sind:
 - (a) Distributivgesetze:

$$A \wedge (B \vee C) \Leftrightarrow (A \wedge B) \vee (A \wedge C)$$
$$A \vee (B \wedge C) \Leftrightarrow (A \vee B) \wedge (A \vee C)$$

(b) De Morgansche Gesetze der Aussagenlogik:

$$\neg (A \land B) \Leftrightarrow (\neg A \lor \neg B) \qquad \neg (A \lor B) \Leftrightarrow (\neg A \land \neg B)$$

- 5. (4 Zusatzpunkte) Zeigen Sie mit Hilfe von Wahrheitswerttafeln, dass für Aussagen A, B, C die folgenden Aussagen immer wahr sind:
 - (a) Zur Negation:

$$\neg(\neg A) \Leftrightarrow A \qquad A \lor \neg A$$

- (b) Zu ∧:
 - 1. Assoziativität $A \wedge (B \wedge C) \Leftrightarrow (A \wedge B) \wedge C$,
 - 2. Idempotenz $(A \wedge A) \Leftrightarrow A$,
 - 3. Kommutativität $A \wedge B \Leftrightarrow B \wedge A$.
- (c) Zu \vee :
 - 1. Assoziativität $A \vee (B \vee C) \Leftrightarrow (A \vee B) \vee C$,
 - 2. Idempotenz $(A \lor A) \Leftrightarrow A$
 - 3. Kommutativität $A \vee B \Leftrightarrow B \vee A$.
- (d) Zur Implikation:

$$(A \Rightarrow B) \Leftrightarrow (\neg A \lor B)$$
$$((A \Rightarrow C) \land (C \Rightarrow B)) \Rightarrow (A \Rightarrow B)$$