Einführung in das symbolische Rechnen Übungsblatt 4

Abgabe Dienstag, den 25.05.2021 bis 23:50 in OpenOlat.

- 1. Sei x in einem kommutativen Ring R mit 1 und $n \in \mathbb{N}$.
 - (a) Beschreiben Sie ein Verfahren, das mittels iterativem Quadrieren x^n berechnet.
 - (b) Bestimmen Sie die Anzahl der R-Multiplikationen Ihres Verfahrens in Landau-Notation abhängig von n.
 - (c) Wenden Sie das Verfahren an, um 3^{11} in \mathbb{Z} und $\overline{3}^{11}$ in $\mathbb{Z}/7$ zu berechnen.
- 2. Sei $B \in \mathbb{Z}$, $B \ge 2$ und seien zwei Zahlen

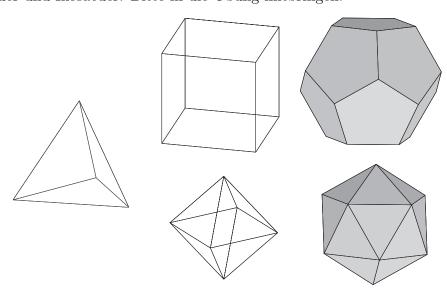
$$x = \sum_{i=0}^{m-1} a_i B^i$$
 $y = \sum_{i=0}^{m-1} b_i B^i$

in B-adischer Entwicklung zur Basis B mit $a_{m-1}, b_{n-1} \neq 0$ und

$$1 < \frac{x}{y} < B$$

gegeben. Sei weiter $x = q \cdot y + r$ mit $0 \le r < y$ das Resultat der Division mit Rest von x durch y. Wir definieren \widetilde{q} als das Minimum von B-1 und

$$\left[\frac{a_n \cdot B + a_{n-1}}{b_{n-1}}\right]$$


(a) Bestimmen Sie q und \tilde{q} für B = 10 und

$$x = 3142351$$
 $y = 677688$.

(b) Zeigen Sie für x und y wie oben, dass

$$q \leq \widetilde{q}$$
.

3. Basteln Sie Papiermodelle der Platonischen Körper Tetraeder, Würfel, Oktaeder, Dodekaeder und Ikosaeder. Bitte in die Übung mitbringen.

- 4. Finden Sie für alle Platonischen Körper jeweils eine Drehsymmetrie und eine Spiegelsymmetrie und beschreiben Sie diese als Elemente der symmetrischen Gruppe S_n mit n die Anzahl der Ecken des Platonischen Körpers.
- 5. (4 Zusatzpunkte)
 - (a) Zeigen Sie mit der Notation und den Voraussetzungen aus Aufgabe 2: Ist

$$b_{n-1} \ge \left\lfloor \frac{B}{2} \right\rfloor$$

dann gilt

$$\widetilde{q} - 2 \le q$$
.

(b) Folgern Sie unter den obigen Voraussetzung, dass bei der Division mit Rest die Zahl q in höchstens $3 \in O(1)$ Versuchen gefunden werden kann.