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Abstract

This is the manuscript for talks given in a seminar on computer
aided geometric design at the University of Saarland. The aim of the
talks was to introduce the basic concepts of algebraic geometry, the
computational tools, i.e. resultants and Groebner bases, and their
geometric applications.
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1 Intersection computations

Considering the task of computing the intersection of V (J1) , V (J2) ⊂ An (k),
J1, J2 ⊂ k [x1, ..., xn] we first recall that V (J1)∩V (J2) is again algebraic and
we know how to describe it

V (J1) ∩ V (J2) = V (J1 + J2)

and the generators of the ideal J1+J2 are given by the union of the generators
of J1 and J2. Do we have more information about the intersection?

1.1 The dimension theorem

Consider two affine linear subspaces U, V ⊂ W of a vector space W of
dimW = n. Then

dimU ∩ V = dimU + dimV − dim (U + V ) ≥ dimU + dimV − n

This also holds for linear subspaces in projective space Pn (k) and there
is an analogous generalization to varieties. First note, that the intersection
of two varieties can be reducible. We define the dimension dimX of X =
V (I) ⊂ An (k) as the maximal d, such that the generic projection

An
(
k̄
)
⊃ V (I) π→ Ad

(
k̄
)

is finite (i.e. π−1 (p) is a finite set of points ∀p ∈ Ad
(
k̄
)
) and surjective.

Then it holds:

Theorem 1 Let k = k̄. If X,Y ⊂ An (k) are varieties of dimX = r and
dimY = s, then each irreducible component of X ∩ Y has dimension ≥
r + s− n. If X and Y are in sufficiently general position to each other then
equality holds.

Note that in the projective setting X, Y ⊂ Pn (k) additionally we get, that
X ∩ Y 	= ∅ if r + s− n ≥ 0 and X ∩ Y is connected if r + s− n ≥ 1.

If the intersection is 0-dimensional i.e. a set of points (e.g., the intersec-
tion of two plane curves), then we can describe it by giving the coordinates
of the points:

1.2 Describing sets of points

Given J ⊂ k [x1, ..., xn] an ideal with |V (J)| <∞, how to compute the points
of V (J) explicitely? The naive algorithm would be:
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1. Project, e.g., compute J ∩ k [xi] = 〈fi〉, which is generated by one
element (k [xi] is a principal ideal domain). This can be done using
Groebner bases or resultants.

2. Compute the finite sets V (fi).

3. Check, which points of V (f1)× ...× V (fn) satisfy J .

but we can do better:

Definition 2 A minimal Groebner basis g1, ..., gr is called reduced, if for all
i, j term of gi is divisible by some L (gj) and the coefficient of all L (gj) is 1.
The reduced Groebner basis is unique.

Lemma 3 (Shape Lemma) Given J =
√
J ⊂ k [x1, ..., xn] with V (J) =

{p1, ..., pr} and pi,n 	= pj,n for all i 	= j, then the reduced Groebner basis with
respect to any monomial order with the property xan < xi for all a and j (e.g.,
lex with x1 > ... > xn) has the shape

x1 − g1 (xn) , ..., xn−1 − gn−1 (xn) , gn (xn)

with gn squarefree of degree deg gn = r and deg gi < deg gn.

We skip the proof, as the idea is simple: All points project to different
n-th coordinate values so the Groebner basis has to contain linear equations,
which allow us to calculate the unique 1, ..., n− 1 coordinate values from the
n coordinate value.

So we could solve gn for the xn-coordinates (e.g., numerically) and use
the equations 1, ..., n− 1 to compute to coordinate values 1, ..., n− 1.

Example 4 Take the equations

f1 = x
3 − y2

f2 = x
3 − z

f3 = xy − 1

A reduced Groebner basis of I = 〈f1, f2, f3〉 with respect to lex with x > y > z
is given by

x− z2, y − z3, z5 − 1
Hence get the points (ζ2, ζ3, ζ) with a fifth root of unity ζ (so over R just
(1, 1, 1)).

See Maple for plot.
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1.3 Intersection of two varieties

Suppose we are given two plane curves C1 and C2 and want to compute the
intersection. By the theorem of Bezout, we expect the intersection C1 ∩ C2
to consist of d1d2 points counted with multiplicity. In Pn with n ≥ 3 we do
not expect C1 and C2 to meet, but nevertheless it can happen due to the
special nature of C1 and C2 with respect to each other. We assume, that C1
and C2 do not have a component in common and hence meet in points.

We already treated the question, how to describe ideals of points, so if
C1 = V (J1) and C2 = V (J2) are given implicitely, consider J = J1 + J2 in
the above discussion.

If one or both curves are given parametrically, then we can compute an
implicit description for them. But if one of the curves is given parametrically,
we should of course take advantage of this:

Lemma 5 For curves C1 and C2 with C1 = image (ϕ) with ϕ : A1 (k) →
An (k) polynomial and C2 = V (J2) with J2 = 〈f1, ..., fr〉 ∈ k [x1, ..., xn] it
holds: There is an f ∈ k [t] with 〈f1 ◦ ϕ, ..., fr ◦ ϕ〉 = 〈f〉 by Euclidian algo-
rithm and

C1 ∩ C2 = ϕ (V (f))

In A3 (k) we expect a surface S and a curve C to meet in points. If C
and S are given implicitely, we are again in the case of describing a zero
dimensional ideal, and otherwise we can implicitize them. If the curve is
given parametrically, then we can deal with this completely analogous to the
curve-curve case.

Example 6 Consider the cubic surface

S = V (xz(x+ z)− y(2− 2x− 2y − 2z)(−y + 2− 2x− 2z)) ⊂ A3

and the curve C = image (ϕ) with ϕ (t) =
(
3t,−2t, 2 + t3 + 21

8
t2 + 5

4
t
)
we get

the equation

S ∩ C = ϕ
(
V

(
1

64
t (8t+ 5) (t+ 2)

(
88t4 + 231t3 + 374t2 + 224t+ 128

)))

so we get 3 real intersection points. See Maple for the plot.

Given two surfaces S1 = V (J1) , S2 = V (J2) ⊂ A3 (k) by the affine
dimension theorem, we expect the intersection to be a curve.
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Example 7 The curve C = V (y2 − x3, z − x2) is the intersection of the two
surfaces V (y2 − x3) and V (z − x2).

Example 8 The intersection of the 2 surfaces

X1 = V
(
x2 − y2z

)

X2 = V (z − 1)

decomposes into a union of two lines:

X1 ∩X2 = V (x− y, z − 1) ∪ V (x+ y, z − 1)

See Maple for the plot.

This naturately poses two questions, we will consider in what follows:
How to describe curves parametrically (if possible) and how to deal with
reducible varieties (this of course one can also apply to a set of points).

2 Decomposing algebraic sets

Definition 9 ∅ 	= S ⊂ kn is called irreducible, if it is not the union of two
proper subvarieties, i.e.

S 	= S1 ∪ S2 for all varieties S1, S2 � S

So the question arises, how to describe this in terms of ideals.
Recall that an ideal is called prime ideal, if f · g ∈ I then f ∈ I or g ∈ I.

Theorem 10 S is irreducible iff I (S) is prime.
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Proof. Suppose I (S) is prime, but S is reducible with S = S1 ∪ S2.
There is a p ∈ S2 and f ∈ I (S1) with f (p) 	= 0. Otherwise I (S1) ⊂ I (S2)
so S1 = S. Symmetrically there is a q ∈ S1 and g ∈ I (S2) with g (q) 	= 0.
Hence f · g ∈ I (S) and f, g /∈ I (S).

Consider our example with the 4 points:

Example 11 〈x2 − 1, y2 − 4〉 = 〈x− 1, y − 2〉∩〈x− 1, y + 2〉∩〈x+ 1, y − 2〉∩
〈x+ 1, y + 2〉, the intersection of 4 maximal ideals.

Recall, that an ideal I � R is called maximal, if for all ideals J with
I ⊂ J ⊂ R holds I = J or J = R. (Exercise: prove that a maximal ideal is
prime). If k = k the maximal ideals correspond to the points.

Example 12 〈x2 − x, xy〉 = 〈x〉∩〈x− 1, y〉, the intersection of a prime ideal
and a maximal ideal.

(Exercise: Prove the equalities).
Since any algebraic set can be written as union of irreducible ones (va-

rieties), and any such is given by a prime ideal, one could expect that any
ideal is the intersection of prime ideals. The example 〈x2〉 shows that this is
false. What is true is the following:

Recall, that an ideal J ⊂ R is called irreducible, if for all ideals J ⊂ Ji
we have J 	= J1 ∩ J2. Futhermore recall, that a ring is called Noetherian, if
the following equivalent conditions hold:

1. every ideal is finitely generated

2. R contains no infinitely properly ascending chain of ideals

I1 � I2 � I3 � ...

3. Any nonempty set of ideals in R has a maximal element.

The Hilbert basis theorem states, that the polynomial ring k [x1, ..., xn] is
Noetherian.

Lemma 13 In a Noetherian ring any ideal is the finite intersection of irre-
ducible ideals.

Proof. Let M be the set of ideals, which cannot be written as a finite
intersection of irreducible ideals. M has a maximal element J , since the ring
is Noetherian. J is not irreducible, i.e. J = J1 ∩ J2. Since J was maximal,
J1 and J2 are finite intersections of irreducibles and so is also J .
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Example 14 In the following example the vanishing locus consists of 2 points

〈
x2 (x− 1) , y

〉
= 〈x− 1, y〉 ∩

〈
x2, y

〉

both ideals are irreducible, but 〈x2, y〉 is not prime.

If we pass to the radical, then our above suspection becomes true:

Theorem 15 For any ideal J the radical
√
J is a finite intersection of prime

ideals.

Example 16 In the above example

〈x (x− 1) , y〉 =
√
〈x2 (x− 1) , y〉 = 〈x− 1, y〉 ∩ 〈x, y〉

3 The genus of a curve

Consider an irreducible curve C ⊂ Pn (C) i.e. a variety of dimension 1. Given
such a C, e.g., obtained as the intersection of some other varieties, from the
computational point of view, it would be great to have a description by a
parametrization. Does every curve have a rational parametrization? The
answer is no, and the reason is the following:

3.1 Topological definition

Any curve C ⊂ Pn (C) is of complex dimension 1 and hence of real dimension
2, i.e. it is a real surface. At almost all points of C we can parametrize C
locally by an open neighbourhood in C. The set of points, where this is not
possible, we call SingC, the singularities of C, e.g., think of

C − SingC (as an orientable topological manifold) is homeomorphic (i.e.
can be transformed continuously) to a manifold with a certain number of
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holes (also zero holes i.e. a shere)

(minus some points, which correspond to the singularities).

Definition 17 We call this number of holes the genus g (C) of C.

Proposition 18 g (C) is a topological invariant and a birational invariant.

We will see in a minute, that exactly the curves C with g (C) = 0 admit
a birational parametrization

ϕ = (f0 : f1 : f2) : P1 (C)→ C ⊂ P2 (C)
(with fi ∈ C [t] homogeneous of equal degree). We call these curves rational.
The above propositon tells us, that any rational curve has g (C) = 0.

3.2 Smooth plane curves

Theorem 19 Let C = V (f) ⊂ P2 (C), f ∈ C [x, y, z], d = deg f be a smooth
curve, then the genus of C is

g (C) =
(d− 1) (d− 2)

2

We check this in the example of the plane cubic:

Example 20 Consider a nonsingular plane cubic, which after a linear co-
ordinate change is given by V (x (x+ 1) (x− λ)− y2) ⊂ A2 (C). The real
picture in A2 (R) looks like
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In the projective point of view C = V (x (x+ z) (x− λz)− y2z) ⊂ P2 (C) and
the real picture in P2 (R) is

Note, that C is tangent of order 3 to the line at infinity. See Maple for the
plot.

Consider the map

f : C → P1 (C) , (x : y : z) �→ (x : z)

which is 2 : 1 as in affine coordinate z = 1 for any value x 	= 0,−1, λ we get
2 values for y:

y = ±
√
x (x+ 1) (x− λ)

and in affine coordinates x = 1 for any value z 	= 0 we get 2 values for y:

y = ±
√

(1 + z) (1− λz) 1
z

By stereographic projection P1 (C) is homeomorphic to the 2 sphere S2 ⊂ R3.
If we cut P1 (C) ≃ S2 along the paths from (0 : 1) to (−1 : 1) and from

(λ : 1) to (1 : 0) and C along the preimages then C falls apart into two pieces

each of them homeomorphic to S2 with two openings
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So C is homeomorphic to the union of these two pieces with the red and the
green curve identified, hence C is homeomorphic to a torus

i.e. g (C) = 1 = 2·1
2
as predicted by the above theorem.

Note that there is one exception: If λ = 0 then C is singular

the two paths join together and C becomes homeomorphic to S2, so has
g (C) = 0.

This naturately raises the question, how to compute the genus of a sin-
gular plane curve:

3.3 Singular plane curves and space curves

Another reason, why we should consider singular curves lies in the fact, that
projections of smooth space curves with g (C) = 0 to the plane happen to be
singular (we will soon see why).

Example 21 Consider the curve C = image (ϕ), ϕ : A1 (k) → A3 (k),
ϕ (t) = (t, t2, t3) and the projection π (C) given by

π : A3 (k)→ A2 (k) , π (x, y, z) = (y, x− z)
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so π (C) = V (u3 − 2u2 + u− v2) and again looks like:

See Maple for the twisted cubic projections.
A singular point of this type is called an ordinary double point (or a node).

In general it holds:

Theorem 22 Any smooth space curve C ′ can be birationally projected to the
plane, to give a curve C with at most ordinary double points.

For example a generic projection will do. By considering the inverse of
the projection C ′ has a parametrization, iff C has one.

Given a plane curve we can compute the genus from the number of nodes:

Theorem 23 Given an irreducible curve C = V (f), f ∈ k [x, y], d = deg f
with δ ordinary double points, the genus g (C) is

g (C) =
(d− 1) (d− 2)

2
− δ

In particular, we note, that the only irreducible nonsingular rational plane
curves are the lines and conics.

4 Parametrization of rational curves

So let´s now consider the question of parametrizing plane curves.

Theorem 24 An irreducible plane curve C ⊂ P2 (C) is rational, iff g (C) =
0.

The idea of the proof in the case of C having only δ double points is as
follows:

Let I (C) = 〈f〉, f ∈ k [x, y, z] homogeneous of degree d = deg f with

g (C) = 0, so δ = (d−1)(d−2)
2

. Consider the projective space of homogeneous
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polynomials of degree d − 1 and in there the linear subspace L of those
polynomials, which pass through all δ double points and through 2d − 3
further smooth points of C (L is called a linear system, and the common
zeroes the base points of L. Note, that if two curves vanish on the base points,
then also any linear combination of them vanishes). As passing through a
point gives 1 linear condition to these polynomials, we get

dimL ≥
(
d (d+ 1)

2
− 1
)
− δ − (2d− 3) = 1

Suppose dimL ≥ 2 then we have 3 linearly independent homogeneous poly-
nomials ϕ0, ϕ1, ϕ2 so for any two points p, q ∈ C\V (L)

(
ϕ0 (p) ϕ1 (p) ϕ2 (p)
ϕ0 (q) ϕ1 (q) ϕ2 (q)

)
· a = 0

has a solution a 	= 0 hence g = a0ϕ0 + a1ϕ1 + a2ϕ2 	= 0 and g (p) = 0 and
g (q) = 0, which contradicts the theorem of Bezout saying that g can only
have one additional intersection point:

d (d− 1) = (2 · δ − 1 · (2d− 3)) + 1

So dimL = 1, i.e. L = 〈ϕ0, ϕ1〉.
Then

ϕ = (ϕ0 : ϕ1) : C → P1 (C)

defines a birational map and the inverse is ψ : P1 (C)→ C with ψ (s : t) the
additional intersection point of C with V (sϕ0 + tϕ1).

Note, that we could also take linear systems of lower degree, if the di-
mension count allows this:

Example 25 C = V (f) ⊂ P2 with

f = x5 + 10x4y + 20x3y2 + 130x2y3 − 20xy4 + 20y5
− 2x4z − 40x3yz − 150x2y2z − 90xy3z − 40y4z
+ x3z2 + 30x2yz2 + 110xy2z2 + 20y3z2

The affine real picture looks as follows:
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C has 3 double points (1, 0) , (0, 1) , (1, 1) and 1 triple point (0, 0).
Here we consider the linear system of quadrics

L =
〈
y2 − yz, x2 − xz

〉

through the 4 singularities, which is generated by the two reducible quadrics
y2 − yz = y (y − z) and x2 − xz = x (x− z)

By the theorem of Bezout each member of L = 〈y2 − yz, x2 − xz〉 has one
additional intersection point, as

5 · 2 = (3 · 1 + 2 · 3) + 1

(see Maple for the animation), so the above argument works and we compute
the parametrization as follows.

We have to invert the rational map

ϕ : C\Z → P1, (x : y : z) �→ (y (y − z) : x (x− z))

with Z = V (y (y − z) , x (x− z)) the four base points, where the map is not
defined.
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We do the computation in the affine setting

C1 = V (f (x, y, 1)) ⊂ A2 = P2\
{
(x : y : 0) | (x : y) ∈ P1

}

A1 = P1\ (1 : 0)

where we already know, how to do this. Here ϕ is given by

ϕ1 : C1\Z1 → A1

(x, y) �→ y (y − 1)
x (x− 1)

with Z1 = V (y (y − 1) , x (x− 1)) and the ideal of the graph can be computed
as

I = 〈f (x, y, 1) , t · x (x− 1)− y (y − 1) , 1− x (x− 1) y (y − 1) a〉 ⊂ k [a, t, x, y]

where we added the helper variable a and helper equation

x (x− 1) y (y − 1) a = 1

to remove solutions (x, y, t) lying over the base points Z1 (where ϕ1 is not
defined).

Computing a lex Groebner basis G of

I = 〈f (x, y, 1) , t · x (x− 1)− y (y − 1) , 1− x (x− 1) y (y − 1) a〉 ⊂ k [a, t, x, y]

with a > t > x > y we observe two things:

1. G ∩ k [t] = 〈0〉 so image (ϕ1) = A1.

2. G contains two equations linear in x and y
(
t2 − t− 1

20

)
x−

(
t2 − 13

2
t− 1

2

)
y = 0

(
161

20
t+

3

8

)
x+ t3y + 13t2y +

201

4
ty +

19

5
y − t3 − 11

2
t2 − 3

2
t− 1

20
= 0

which we can solve for (x, y) and get the parametrization

x (t) =
t5 + 12t4 + 151

4
t3 + 251

20
t2 + 43

40
t+ 1

40

t5 + 12t4 + 181
4
t3 + 28

5
t2 + 3

20
t− 1

400

y (t) =
t5 + 9

2
t4 − 81

20
t3 − 69

40
t2 − 1

8
t− 1

400

t5 + 12t4 + 181
4
t3 + 28

5
t2 + 3

20
t− 1

400
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In practice, if we are given a rational curveC ⊂ P2 (C) by an homogeneous
equation f ∈ Q [x, y, z], we would like to have a parametrization of C by
rational functions with coefficients in Q. To use the proof of the theorem
we could try to find points of C over Q, which is nontrivial and not always
possible. A solution to this problem is given by:

Theorem 26 For an irreducible plane curve C ⊂ P2
(
k
)
, I (C) = 〈f〉, f ∈

k [x, y, z] with g (C) = 0 it holds:

1. If deg f is odd, then there is a birational map P1
(
k
)
→ C with coeffi-

cients in k.

2. If deg f is even, then there is a birational map C2 → C with coefficients
in k, where C2 = V (g) ⊂ P2

(
k
)
, g ∈ k [x, y, z] is a plane conic. To

parametrize C2 we need a field extension of degree 2, iff C2 does not
contain a point over k.

These maps can be computed algorithmically.
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