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Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

The moduli space of 1-dimensional vector subspaces of C2 is

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

P1 = (C2\{0}) / C∗

Construction depends on the choice of open subset

U = C2\{0} ⊂ C2

For torus actions on affine varieties, classify all possible quotients (choices
of open sets) in terms of a polyhedral fan, the GIT-fan.
This setting plays an important role in constructing Mori Dream Spaces.
Some moduli spaces are of this type.
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Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of an algebraic group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G as it does
not necessarily carry the structure of an algebraic variety (often not
separated).

Hence, for X affine define

X//G = SpecK [X ]G

as the spectrum of the (finitely generated) invariant ring of the
functions of X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .
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Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 3 / 23



Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 3 / 23



Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 3 / 23



GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients.

We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr ] defining X ,

matrix Q = (q1, . . . , qr ) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti ) = qi ∈ Zk .

Remark

Q encodes an action (C∗)k × X → X .

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty) is encoded by Q = (1, 1) ∈ Z1×2.
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GIT-Fans

Write A = C[T1, . . . ,Tr ]/a.

Definition

For x ∈ X the orbit cone is

ω(x) = cone{w ∈ imQ | ∃f ∈ Aw with f (x) 6= 0}

For w ∈ imQ the set of semistable points is

X ss(w) = {x ∈ X | ∃n > 0, f ∈ Anw with f (x) 6= 0} ⊂ X

and the GIT-cone is
λ(w) =

⋂
w∈ω(x)ω(x)

Remark

Ω = {ω(x) | x ∈ X} is finite.
X ss(w) ⊂ X is torus invariant open, non-empty if w ∈ cone(q1, . . . , qr )
λ(w) is a polyhedral cone.
w ∼ w ′ ⇔ X ss(w) = X ss(w ′) is equivalence relation.
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GIT-Fans

Theorem

For every w ∈ imQ there is a good quotient X ss(w)//G .

Theorem

λ(w) ⊂ λ(w ′)⇔ X ss(w) ⊃ X ss(w ′)
λ(w) = λ(w ′)⇔ X ss(w) = X ss(w ′)

Theorem

Λ(a,Q) = {λ(w) | w} is rational polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

X ss(0) = C2

X ss(1) = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 6 / 23



GIT-Fans

Theorem

For every w ∈ imQ there is a good quotient X ss(w)//G .

Theorem

λ(w) ⊂ λ(w ′)⇔ X ss(w) ⊃ X ss(w ′)
λ(w) = λ(w ′)⇔ X ss(w) = X ss(w ′)

Theorem

Λ(a,Q) = {λ(w) | w} is rational polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

X ss(0) = C2

X ss(1) = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 6 / 23



GIT-Fans

Theorem

For every w ∈ imQ there is a good quotient X ss(w)//G .

Theorem

λ(w) ⊂ λ(w ′)⇔ X ss(w) ⊃ X ss(w ′)
λ(w) = λ(w ′)⇔ X ss(w) = X ss(w ′)

Theorem

Λ(a,Q) = {λ(w) | w} is rational polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

X ss(0) = C2

X ss(1) = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 6 / 23



GIT-Fans

Theorem

For every w ∈ imQ there is a good quotient X ss(w)//G .

Theorem

λ(w) ⊂ λ(w ′)⇔ X ss(w) ⊃ X ss(w ′)
λ(w) = λ(w ′)⇔ X ss(w) = X ss(w ′)

Theorem

Λ(a,Q) = {λ(w) | w} is rational polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

X ss(0) = C2

X ss(1) = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 6 / 23



Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits

Cr =
⋃
γ

O(γ)

O(γ) = (C∗)r · ∑
ei∈γ

ei = {(z1, . . . , zr ) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

for faces γ ≺ Qr
≥0.

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

3 There is x ∈ X with xi 6= 0⇔ ei ∈ γ
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Computing GIT-Fans

1 Determine a-faces.

2 Compute set of orbit cones

Ω = {Q(γ) | γ an a-face}

where

Q(γ) = cone(qi | ei ∈ γ) ⊂ Γ = Q(Qr
≥0) = cone(q1, . . . , qr ) ⊂ Qk

is projection of γ with respect to Q.

3 Determine GIT-fan:

Λ(a,Q) = {λΩ(w) | w ∈ Γ} where λΩ(w) =
⋂

w∈η∈Ω

η
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GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr ] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C
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Singular

GIT-algorithm is implemented in Singular library gitfan.lib using
Gröbner bases for determining a-faces via saturation.

Computer algebra system for polynomial computations, over 30
development teams worldwide, over 130 libraries for advanced topics.

Special emphasis on algebraic geometry, commutative and
non-commutative algebra, singularity theory.

Packages for convex and tropical geometry.
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Singular-Polymake Interface

Example (polymake.so)

Compute the normal fan F of the Newton polytope P of f = x3 + y3 + 1.

> LIB "polymake.so";

Welcome to polymake version 2.14

Copyright (c) 1997-2015

Ewgenij Gawrilow, Michael Joswig (TU Berlin)

http://www.polymake.org

// ** loaded polymake.so

> ring R = 0,(x,y),dp; poly f = x3+y3+1;

> polytope P = newtonPolytope(f);

> fan F = normalFan(P); F;
RAYS:

-1 -1 #0

0 1 #1

1 0 #2

MAXIMAL CONES:

{0 1} #Dimension 2

{0 2}
{1 2}
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Parallel computations in Singular

Computation of a-faces is trivially parallel.

Example (parallel.lib)
> LIB "parallel.lib"; LIB "random.lib";

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11
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> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11
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Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f ).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .
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Timings

Saturation in product of variables for ideal a with 225 generators in 40
variables with variables not in J equal to 0:

{1, . . . , 40}\J 40− |J | a-face divgbsat gbsat sat rabinowitsch

{3, 4, 5, 7, . . . , 15} 28 no 1 761 517 342
{9, 11, 12, 13, 15} 35 no 1 57200 ∗ ∗
{11, 12, 13, 15} 36 no 1 44100 ∗ ∗
{9, 11, 14, 15} 36 yes 64 121000 ∗ ∗
{9, 11, 15} 37 yes 1170 114000 ∗ ∗
{9, 11, 13} 37 no 1 31400 ∗ ∗

(in seconds, * did not finish in > 2 days)
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Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of Cr on X is a subgroup G ⊂ Sr of the
symmetric group such that there are group actions

G × K[T1, . . . ,Tr ] → K[T1, . . . ,Tr ], (σ,Tj ) 7→ σ(Tj ) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej ) 7→ σ(ej ) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk
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Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{
1 λ ⊂ ϑ

0 λ 6⊂ ϑ



G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]
such that

g · hΩ(λ) = hΩ(g · λ).
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Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C
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12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23



Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
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8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}

13: else
14: F := F \ {(η, v)}
15: return C
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13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23



An Example with D4-Symmetry

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj ) = qj

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

A(1,2)(3,4) =

(
−1 0
0 1

)
A(1,2,3,4) =

(
0 −1
1 0

)
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Example with D4-symmetry

Example

γ |G · γ| a|Ti=0 for ei /∈γ a-face

γ0 = cone(0) 1 0 true

γ1 = cone(e1) 4 0 true

γ2 = cone(e1, e2) 4 0 true

γ′2 = cone(e1, e3) 2 〈T1T3〉 false

γ3 = cone(e1, e2, e3) 4 〈T1T3〉 false

γ4 = cone(e1, e2, e3, e4) 1 〈T1T3 − T2T4〉 true

Q(γ0) = cone(0), Q(γ1) = cone
[

1
1

]
, Q(γ2) = cone

([
1
1

]
,

[
−1
1

])
, Q(γ4) = Q2

w0 =

(
0
1

)
(0, 0)

q1q2

q3 q4

λ(w0)
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Moduli Spaces of Stable Maps and Mori Dream Spaces

Mori dream spaces have a finitely generated Cox ring. They are toric iff
the Cox ring is a polynomial ring.

Similar to toric varieties, they admit a
construction as a GIT-quotient (Hu, Keel, 2000). The GIT-fan yields the
Mori chamber decomposition, which describes all birational modifications.

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

1 M0,n for n ≤ 6 is a Mori dream space (Castravet, 2009 for n = 6)

2 M0,n for n > 133 is not a Mori dream space (Castravet, Tevelev,
2013)
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Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5).

Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5
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Example: GIT-fan for G(2, 5)

Adjacency graph of the maximal-dimensional GIT-cones and their orbits:
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Application: Mori Chamber Decomposition of Mov(M0,6)

Moving cone Mov(M0,6) classifies all small modifications (rational maps
which are isomorphisms on open subsets which have a complement of
codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009),

and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051
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