
Computing GIT-Fans with Symmetry

Janko Boehm
joint with S. Keicher, Y. Ren

Technische Universität Kaiserslautern

29 January 2016

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 0 / 23

Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

The moduli space of 1-dimensional vector subspaces of C2 is

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

P1 = (C2\{0}) / C∗

Construction depends on the choice of open subset

U = C2\{0} ⊂ C2

For torus actions on affine varieties, classify all possible quotients (choices
of open sets) in terms of a polyhedral fan, the GIT-fan.
This setting plays an important role in constructing Mori Dream Spaces.
Some moduli spaces are of this type.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 0 / 23

Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

The moduli space of 1-dimensional vector subspaces of C2 is

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

P1 = (C2\{0}) / C∗

Construction depends on the choice of open subset

U = C2\{0} ⊂ C2

For torus actions on affine varieties, classify all possible quotients (choices
of open sets) in terms of a polyhedral fan, the GIT-fan.
This setting plays an important role in constructing Mori Dream Spaces.
Some moduli spaces are of this type.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 0 / 23

Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

The moduli space of 1-dimensional vector subspaces of C2 is

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

P1 = (C2\{0}) / C∗

Construction depends on the choice of open subset

U = C2\{0} ⊂ C2

For torus actions on affine varieties, classify all possible quotients (choices
of open sets) in terms of a polyhedral fan, the GIT-fan.
This setting plays an important role in constructing Mori Dream Spaces.
Some moduli spaces are of this type.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 0 / 23

Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

The moduli space of 1-dimensional vector subspaces of C2 is

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

P1 = (C2\{0}) / C∗

Construction depends on the choice of open subset

U = C2\{0} ⊂ C2

For torus actions on affine varieties, classify all possible quotients (choices
of open sets) in terms of a polyhedral fan, the GIT-fan.

This setting plays an important role in constructing Mori Dream Spaces.
Some moduli spaces are of this type.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 0 / 23

Quotients

Quotients of algebraic varieties by algebraic groups play an important role
in constructing moduli spaces.

Example

The moduli space of 1-dimensional vector subspaces of C2 is

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

P1 = (C2\{0}) / C∗

Construction depends on the choice of open subset

U = C2\{0} ⊂ C2

For torus actions on affine varieties, classify all possible quotients (choices
of open sets) in terms of a polyhedral fan, the GIT-fan.
This setting plays an important role in constructing Mori Dream Spaces.
Some moduli spaces are of this type.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 0 / 23

Outline

Good quotients

GIT-fan

Computing GIT-fans

Fast monomial containment test

Symmetry groups of torus actions

Representation of GIT-cones

Symmetric GIT-fan algorithm

Applications

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 1 / 23

Outline

Good quotients

GIT-fan

Computing GIT-fans

Fast monomial containment test

Symmetry groups of torus actions

Representation of GIT-cones

Symmetric GIT-fan algorithm

Applications

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 1 / 23

Outline

Good quotients

GIT-fan

Computing GIT-fans

Fast monomial containment test

Symmetry groups of torus actions

Representation of GIT-cones

Symmetric GIT-fan algorithm

Applications

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 1 / 23

Outline

Good quotients

GIT-fan

Computing GIT-fans

Fast monomial containment test

Symmetry groups of torus actions

Representation of GIT-cones

Symmetric GIT-fan algorithm

Applications

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 1 / 23

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of an algebraic group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G as it does
not necessarily carry the structure of an algebraic variety (often not
separated).

Hence, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions of X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 2 / 23

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of an algebraic group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G as it does
not necessarily carry the structure of an algebraic variety (often not
separated).

Hence, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions of X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 2 / 23

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of an algebraic group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G as it does
not necessarily carry the structure of an algebraic variety (often not
separated).

Hence, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions of X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 2 / 23

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of an algebraic group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G as it does
not necessarily carry the structure of an algebraic variety (often not
separated).

Hence, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions of X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 2 / 23

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of an algebraic group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G as it does
not necessarily carry the structure of an algebraic variety (often not
separated).

Hence, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions of X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 2 / 23

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of an algebraic group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G as it does
not necessarily carry the structure of an algebraic variety (often not
separated).

Hence, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions of X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 2 / 23

Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 3 / 23

Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 3 / 23

Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 3 / 23

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients.

We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Remark

Q encodes an action (C∗)k × X → X .

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty) is encoded by Q = (1, 1) ∈ Z1×2.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 4 / 23

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients. We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Remark

Q encodes an action (C∗)k × X → X .

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty) is encoded by Q = (1, 1) ∈ Z1×2.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 4 / 23

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients. We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Remark

Q encodes an action (C∗)k × X → X .

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty) is encoded by Q = (1, 1) ∈ Z1×2.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 4 / 23

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients. We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Remark

Q encodes an action (C∗)k × X → X .

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty) is encoded by Q = (1, 1) ∈ Z1×2.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 4 / 23

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients. We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Remark

Q encodes an action (C∗)k × X → X .

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

is encoded by Q = (1, 1) ∈ Z1×2.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 4 / 23

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients. We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Remark

Q encodes an action (C∗)k × X → X .

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty) is encoded by Q = (1, 1) ∈ Z1×2.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 4 / 23

GIT-Fans

Write A = C[T1, . . . ,Tr]/a.

Definition

For x ∈ X the orbit cone is

ω(x) = cone{w ∈ imQ | ∃f ∈ Aw with f (x) 6= 0}

For w ∈ imQ the set of semistable points is

X ss(w) = {x ∈ X | ∃n > 0, f ∈ Anw with f (x) 6= 0} ⊂ X

and the GIT-cone is
λ(w) =

⋂
w∈ω(x)ω(x)

Remark

Ω = {ω(x) | x ∈ X} is finite.
X ss(w) ⊂ X is torus invariant open, non-empty if w ∈ cone(q1, . . . , qr)
λ(w) is a polyhedral cone.
w ∼ w ′ ⇔ X ss(w) = X ss(w ′) is equivalence relation.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 5 / 23

GIT-Fans

Write A = C[T1, . . . ,Tr]/a.

Definition

For x ∈ X the orbit cone is

ω(x) = cone{w ∈ imQ | ∃f ∈ Aw with f (x) 6= 0}

For w ∈ imQ the set of semistable points is

X ss(w) = {x ∈ X | ∃n > 0, f ∈ Anw with f (x) 6= 0} ⊂ X

and the GIT-cone is
λ(w) =

⋂
w∈ω(x)ω(x)

Remark

Ω = {ω(x) | x ∈ X} is finite.
X ss(w) ⊂ X is torus invariant open, non-empty if w ∈ cone(q1, . . . , qr)
λ(w) is a polyhedral cone.
w ∼ w ′ ⇔ X ss(w) = X ss(w ′) is equivalence relation.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 5 / 23

GIT-Fans

Write A = C[T1, . . . ,Tr]/a.

Definition

For x ∈ X the orbit cone is

ω(x) = cone{w ∈ imQ | ∃f ∈ Aw with f (x) 6= 0}

For w ∈ imQ the set of semistable points is

X ss(w) = {x ∈ X | ∃n > 0, f ∈ Anw with f (x) 6= 0} ⊂ X

and the GIT-cone is
λ(w) =

⋂
w∈ω(x)ω(x)

Remark

Ω = {ω(x) | x ∈ X} is finite.
X ss(w) ⊂ X is torus invariant open, non-empty if w ∈ cone(q1, . . . , qr)
λ(w) is a polyhedral cone.
w ∼ w ′ ⇔ X ss(w) = X ss(w ′) is equivalence relation.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 5 / 23

GIT-Fans

Write A = C[T1, . . . ,Tr]/a.

Definition

For x ∈ X the orbit cone is

ω(x) = cone{w ∈ imQ | ∃f ∈ Aw with f (x) 6= 0}

For w ∈ imQ the set of semistable points is

X ss(w) = {x ∈ X | ∃n > 0, f ∈ Anw with f (x) 6= 0} ⊂ X

and the GIT-cone is
λ(w) =

⋂
w∈ω(x)ω(x)

Remark

Ω = {ω(x) | x ∈ X} is finite.

X ss(w) ⊂ X is torus invariant open, non-empty if w ∈ cone(q1, . . . , qr)
λ(w) is a polyhedral cone.
w ∼ w ′ ⇔ X ss(w) = X ss(w ′) is equivalence relation.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 5 / 23

GIT-Fans

Write A = C[T1, . . . ,Tr]/a.

Definition

For x ∈ X the orbit cone is

ω(x) = cone{w ∈ imQ | ∃f ∈ Aw with f (x) 6= 0}

For w ∈ imQ the set of semistable points is

X ss(w) = {x ∈ X | ∃n > 0, f ∈ Anw with f (x) 6= 0} ⊂ X

and the GIT-cone is
λ(w) =

⋂
w∈ω(x)ω(x)

Remark

Ω = {ω(x) | x ∈ X} is finite.
X ss(w) ⊂ X is torus invariant open, non-empty if w ∈ cone(q1, . . . , qr)

λ(w) is a polyhedral cone.
w ∼ w ′ ⇔ X ss(w) = X ss(w ′) is equivalence relation.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 5 / 23

GIT-Fans

Write A = C[T1, . . . ,Tr]/a.

Definition

For x ∈ X the orbit cone is

ω(x) = cone{w ∈ imQ | ∃f ∈ Aw with f (x) 6= 0}

For w ∈ imQ the set of semistable points is

X ss(w) = {x ∈ X | ∃n > 0, f ∈ Anw with f (x) 6= 0} ⊂ X

and the GIT-cone is
λ(w) =

⋂
w∈ω(x)ω(x)

Remark

Ω = {ω(x) | x ∈ X} is finite.
X ss(w) ⊂ X is torus invariant open, non-empty if w ∈ cone(q1, . . . , qr)
λ(w) is a polyhedral cone.

w ∼ w ′ ⇔ X ss(w) = X ss(w ′) is equivalence relation.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 5 / 23

GIT-Fans

Write A = C[T1, . . . ,Tr]/a.

Definition

For x ∈ X the orbit cone is

ω(x) = cone{w ∈ imQ | ∃f ∈ Aw with f (x) 6= 0}

For w ∈ imQ the set of semistable points is

X ss(w) = {x ∈ X | ∃n > 0, f ∈ Anw with f (x) 6= 0} ⊂ X

and the GIT-cone is
λ(w) =

⋂
w∈ω(x)ω(x)

Remark

Ω = {ω(x) | x ∈ X} is finite.
X ss(w) ⊂ X is torus invariant open, non-empty if w ∈ cone(q1, . . . , qr)
λ(w) is a polyhedral cone.
w ∼ w ′ ⇔ X ss(w) = X ss(w ′) is equivalence relation.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 5 / 23

GIT-Fans

Theorem

For every w ∈ imQ there is a good quotient X ss(w)//G .

Theorem

λ(w) ⊂ λ(w ′)⇔ X ss(w) ⊃ X ss(w ′)
λ(w) = λ(w ′)⇔ X ss(w) = X ss(w ′)

Theorem

Λ(a,Q) = {λ(w) | w} is rational polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

X ss(0) = C2

X ss(1) = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 6 / 23

GIT-Fans

Theorem

For every w ∈ imQ there is a good quotient X ss(w)//G .

Theorem

λ(w) ⊂ λ(w ′)⇔ X ss(w) ⊃ X ss(w ′)
λ(w) = λ(w ′)⇔ X ss(w) = X ss(w ′)

Theorem

Λ(a,Q) = {λ(w) | w} is rational polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

X ss(0) = C2

X ss(1) = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 6 / 23

GIT-Fans

Theorem

For every w ∈ imQ there is a good quotient X ss(w)//G .

Theorem

λ(w) ⊂ λ(w ′)⇔ X ss(w) ⊃ X ss(w ′)
λ(w) = λ(w ′)⇔ X ss(w) = X ss(w ′)

Theorem

Λ(a,Q) = {λ(w) | w} is rational polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

X ss(0) = C2

X ss(1) = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 6 / 23

GIT-Fans

Theorem

For every w ∈ imQ there is a good quotient X ss(w)//G .

Theorem

λ(w) ⊂ λ(w ′)⇔ X ss(w) ⊃ X ss(w ′)
λ(w) = λ(w ′)⇔ X ss(w) = X ss(w ′)

Theorem

Λ(a,Q) = {λ(w) | w} is rational polyhedral fan, the GIT-fan.

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

X ss(0) = C2

X ss(1) = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 6 / 23

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits

Cr =
⋃
γ

O(γ)

O(γ) = (C∗)r · ∑
ei∈γ

ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

for faces γ ≺ Qr
≥0.

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

3 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 7 / 23

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.

Decomposition into torus orbits

Cr =
⋃
γ

O(γ)

O(γ) = (C∗)r · ∑
ei∈γ

ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

for faces γ ≺ Qr
≥0.

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

3 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 7 / 23

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits

Cr =
⋃
γ

O(γ)

O(γ) = (C∗)r · ∑
ei∈γ

ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

for faces γ ≺ Qr
≥0.

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

3 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 7 / 23

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits

Cr =
⋃
γ

O(γ)

O(γ) = (C∗)r · ∑
ei∈γ

ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

for faces γ ≺ Qr
≥0.

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

3 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 7 / 23

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits

Cr =
⋃
γ

O(γ)

O(γ) = (C∗)r · ∑
ei∈γ

ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

for faces γ ≺ Qr
≥0.

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅

2
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

3 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 7 / 23

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits

Cr =
⋃
γ

O(γ)

O(γ) = (C∗)r · ∑
ei∈γ

ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

for faces γ ≺ Qr
≥0.

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

3 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 7 / 23

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits

Cr =
⋃
γ

O(γ)

O(γ) = (C∗)r · ∑
ei∈γ

ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

for faces γ ≺ Qr
≥0.

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

3 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 7 / 23

Computing GIT-Fans

1 Determine a-faces.

2 Compute set of orbit cones

Ω = {Q(γ) | γ an a-face}

where

Q(γ) = cone(qi | ei ∈ γ) ⊂ Γ = Q(Qr
≥0) = cone(q1, . . . , qr) ⊂ Qk

is projection of γ with respect to Q.

3 Determine GIT-fan:

Λ(a,Q) = {λΩ(w) | w ∈ Γ} where λΩ(w) =
⋂

w∈η∈Ω

η

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 8 / 23

Computing GIT-Fans

1 Determine a-faces.

2 Compute set of orbit cones

Ω = {Q(γ) | γ an a-face}

where

Q(γ) = cone(qi | ei ∈ γ) ⊂ Γ = Q(Qr
≥0) = cone(q1, . . . , qr) ⊂ Qk

is projection of γ with respect to Q.

3 Determine GIT-fan:

Λ(a,Q) = {λΩ(w) | w ∈ Γ} where λΩ(w) =
⋂

w∈η∈Ω

η

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 8 / 23

Computing GIT-Fans

1 Determine a-faces.

2 Compute set of orbit cones

Ω = {Q(γ) | γ an a-face}

where

Q(γ) = cone(qi | ei ∈ γ) ⊂ Γ = Q(Qr
≥0) = cone(q1, . . . , qr) ⊂ Qk

is projection of γ with respect to Q.

3 Determine GIT-fan:

Λ(a,Q) = {λΩ(w) | w ∈ Γ} where λΩ(w) =
⋂

w∈η∈Ω

η

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 8 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}

3: Choose a vector w0 ∈ Q(Qr
≥0) such that dim(λΩ(w0)) = k .

4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .

4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}

5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.

6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.

8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}

9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}
10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k .
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 9 / 23

Singular

GIT-algorithm is implemented in Singular library gitfan.lib using
Gröbner bases for determining a-faces via saturation.

Computer algebra system for polynomial computations, over 30
development teams worldwide, over 130 libraries for advanced topics.

Special emphasis on algebraic geometry, commutative and
non-commutative algebra, singularity theory.

Packages for convex and tropical geometry.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 10 / 23

Singular

GIT-algorithm is implemented in Singular library gitfan.lib using
Gröbner bases for determining a-faces via saturation.

Computer algebra system for polynomial computations, over 30
development teams worldwide, over 130 libraries for advanced topics.

Special emphasis on algebraic geometry, commutative and
non-commutative algebra, singularity theory.

Packages for convex and tropical geometry.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 10 / 23

Singular

GIT-algorithm is implemented in Singular library gitfan.lib using
Gröbner bases for determining a-faces via saturation.

Computer algebra system for polynomial computations, over 30
development teams worldwide, over 130 libraries for advanced topics.

Special emphasis on algebraic geometry, commutative and
non-commutative algebra, singularity theory.

Packages for convex and tropical geometry.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 10 / 23

Singular

GIT-algorithm is implemented in Singular library gitfan.lib using
Gröbner bases for determining a-faces via saturation.

Computer algebra system for polynomial computations, over 30
development teams worldwide, over 130 libraries for advanced topics.

Special emphasis on algebraic geometry, commutative and
non-commutative algebra, singularity theory.

Packages for convex and tropical geometry.

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 10 / 23

Singular-Polymake Interface

Example (polymake.so)

Compute the normal fan F of the Newton polytope P of f = x3 + y3 + 1.

> LIB "polymake.so";

Welcome to polymake version 2.14

Copyright (c) 1997-2015

Ewgenij Gawrilow, Michael Joswig (TU Berlin)

http://www.polymake.org

// ** loaded polymake.so

> ring R = 0,(x,y),dp; poly f = x3+y3+1;

> polytope P = newtonPolytope(f);

> fan F = normalFan(P); F;
RAYS:

-1 -1 #0

0 1 #1

1 0 #2

MAXIMAL CONES:

{0 1} #Dimension 2

{0 2}
{1 2}

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 11 / 23

Singular-Polymake Interface

Example (polymake.so)

Compute the normal fan F of the Newton polytope P of f = x3 + y3 + 1.

> LIB "polymake.so";

Welcome to polymake version 2.14

Copyright (c) 1997-2015

Ewgenij Gawrilow, Michael Joswig (TU Berlin)

http://www.polymake.org

// ** loaded polymake.so

> ring R = 0,(x,y),dp; poly f = x3+y3+1;

> polytope P = newtonPolytope(f);

> fan F = normalFan(P); F;
RAYS:

-1 -1 #0

0 1 #1

1 0 #2

MAXIMAL CONES:

{0 1} #Dimension 2

{0 2}
{1 2}

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 11 / 23

Singular-Polymake Interface

Example (polymake.so)

Compute the normal fan F of the Newton polytope P of f = x3 + y3 + 1.

> LIB "polymake.so";

Welcome to polymake version 2.14

Copyright (c) 1997-2015

Ewgenij Gawrilow, Michael Joswig (TU Berlin)

http://www.polymake.org

// ** loaded polymake.so

> ring R = 0,(x,y),dp; poly f = x3+y3+1;

> polytope P = newtonPolytope(f);

> fan F = normalFan(P); F;
RAYS:

-1 -1 #0

0 1 #1

1 0 #2

MAXIMAL CONES:

{0 1} #Dimension 2

{0 2}
{1 2}

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 11 / 23

Singular-Polymake Interface

Example (polymake.so)

Compute the normal fan F of the Newton polytope P of f = x3 + y3 + 1.

> LIB "polymake.so";

Welcome to polymake version 2.14

Copyright (c) 1997-2015

Ewgenij Gawrilow, Michael Joswig (TU Berlin)

http://www.polymake.org

// ** loaded polymake.so

> ring R = 0,(x,y),dp; poly f = x3+y3+1;

> polytope P = newtonPolytope(f);

> fan F = normalFan(P); F;
RAYS:

-1 -1 #0

0 1 #1

1 0 #2

MAXIMAL CONES:

{0 1} #Dimension 2

{0 2}
{1 2}

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 11 / 23

Singular-Polymake Interface

Example (polymake.so)

Compute the normal fan F of the Newton polytope P of f = x3 + y3 + 1.

> LIB "polymake.so";

Welcome to polymake version 2.14

Copyright (c) 1997-2015

Ewgenij Gawrilow, Michael Joswig (TU Berlin)

http://www.polymake.org

// ** loaded polymake.so

> ring R = 0,(x,y),dp; poly f = x3+y3+1;

> polytope P = newtonPolytope(f);

> fan F = normalFan(P); F;
RAYS:

-1 -1 #0

0 1 #1

1 0 #2

MAXIMAL CONES:

{0 1} #Dimension 2

{0 2}
{1 2}

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 11 / 23

Parallel computations in Singular

Computation of a-faces is trivially parallel.

Example (parallel.lib)
> LIB "parallel.lib"; LIB "random.lib";

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 12 / 23

Parallel computations in Singular

Computation of a-faces is trivially parallel.

Example (parallel.lib)
> LIB "parallel.lib"; LIB "random.lib";

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 12 / 23

Parallel computations in Singular

Computation of a-faces is trivially parallel.

Example (parallel.lib)
> LIB "parallel.lib"; LIB "random.lib";

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}

> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 12 / 23

Parallel computations in Singular

Computation of a-faces is trivially parallel.

Example (parallel.lib)
> LIB "parallel.lib"; LIB "random.lib";

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 12 / 23

Parallel computations in Singular

Computation of a-faces is trivially parallel.

Example (parallel.lib)
> LIB "parallel.lib"; LIB "random.lib";

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 12 / 23

Parallel computations in Singular

Computation of a-faces is trivially parallel.

Example (parallel.lib)
> LIB "parallel.lib"; LIB "random.lib";

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 12 / 23

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 13 / 23

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 13 / 23

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 13 / 23

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞,

replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 13 / 23

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 13 / 23

Timings

Saturation in product of variables for ideal a with 225 generators in 40
variables with variables not in J equal to 0:

{1, . . . , 40}\J 40− |J | a-face divgbsat gbsat sat rabinowitsch

{3, 4, 5, 7, . . . , 15} 28 no 1 761 517 342
{9, 11, 12, 13, 15} 35 no 1 57200 ∗ ∗
{11, 12, 13, 15} 36 no 1 44100 ∗ ∗
{9, 11, 14, 15} 36 yes 64 121000 ∗ ∗
{9, 11, 15} 37 yes 1170 114000 ∗ ∗
{9, 11, 13} 37 no 1 31400 ∗ ∗

(in seconds, * did not finish in > 2 days)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 14 / 23

Timings

Saturation in product of variables for ideal a with 225 generators in 40
variables with variables not in J equal to 0:

{1, . . . , 40}\J 40− |J | a-face divgbsat gbsat sat rabinowitsch

{3, 4, 5, 7, . . . , 15} 28 no 1 761 517 342
{9, 11, 12, 13, 15} 35 no 1 57200 ∗ ∗
{11, 12, 13, 15} 36 no 1 44100 ∗ ∗
{9, 11, 14, 15} 36 yes 64 121000 ∗ ∗
{9, 11, 15} 37 yes 1170 114000 ∗ ∗
{9, 11, 13} 37 no 1 31400 ∗ ∗

(in seconds, * did not finish in > 2 days)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 14 / 23

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of Cr on X is a subgroup G ⊂ Sr of the
symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 15 / 23

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of Cr on X is a subgroup G ⊂ Sr of the
symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 15 / 23

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of Cr on X is a subgroup G ⊂ Sr of the
symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr

such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 15 / 23

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of Cr on X is a subgroup G ⊂ Sr of the
symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 15 / 23

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of Cr on X is a subgroup G ⊂ Sr of the
symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 15 / 23

Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{
1 λ ⊂ ϑ

0 λ 6⊂ ϑ

G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]
such that

g · hΩ(λ) = hΩ(g · λ).

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 16 / 23

Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{
1 λ ⊂ ϑ

0 λ 6⊂ ϑ

G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]
such that

g · hΩ(λ) = hΩ(g · λ).

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 16 / 23

Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{
1 λ ⊂ ϑ

0 λ 6⊂ ϑ

G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]

such that
g · hΩ(λ) = hΩ(g · λ).

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 16 / 23

Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{
1 λ ⊂ ϑ

0 λ 6⊂ ϑ

G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]
such that

g · hΩ(λ) = hΩ(g · λ).

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 16 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}

3: Ω :=
⋃

γ∈A G ·Q(γ)
4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)

5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .

6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}

7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}

8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.

10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}

12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}

13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}

15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G -orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k .
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 17 / 23

An Example with D4-Symmetry

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj) = qj

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

A(1,2)(3,4) =

(
−1 0
0 1

)
A(1,2,3,4) =

(
0 −1
1 0

)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 18 / 23

An Example with D4-Symmetry

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj) = qj

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

A(1,2)(3,4) =

(
−1 0
0 1

)
A(1,2,3,4) =

(
0 −1
1 0

)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 18 / 23

An Example with D4-Symmetry

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj) = qj

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

A(1,2)(3,4) =

(
−1 0
0 1

)
A(1,2,3,4) =

(
0 −1
1 0

)
Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 18 / 23

Example with D4-symmetry

Example

γ |G · γ| a|Ti=0 for ei /∈γ a-face

γ0 = cone(0) 1 0 true

γ1 = cone(e1) 4 0 true

γ2 = cone(e1, e2) 4 0 true

γ′2 = cone(e1, e3) 2 〈T1T3〉 false

γ3 = cone(e1, e2, e3) 4 〈T1T3〉 false

γ4 = cone(e1, e2, e3, e4) 1 〈T1T3 − T2T4〉 true

Q(γ0) = cone(0), Q(γ1) = cone
[

1
1

]
, Q(γ2) = cone

([
1
1

]
,

[
−1
1

])
, Q(γ4) = Q2

w0 =

(
0
1

)
(0, 0)

q1q2

q3 q4

λ(w0)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 19 / 23

Example with D4-symmetry

Example

γ |G · γ| a|Ti=0 for ei /∈γ a-face

γ0 = cone(0) 1 0 true

γ1 = cone(e1) 4 0 true

γ2 = cone(e1, e2) 4 0 true

γ′2 = cone(e1, e3) 2 〈T1T3〉 false

γ3 = cone(e1, e2, e3) 4 〈T1T3〉 false

γ4 = cone(e1, e2, e3, e4) 1 〈T1T3 − T2T4〉 true

Q(γ0) = cone(0), Q(γ1) = cone
[

1
1

]
, Q(γ2) = cone

([
1
1

]
,

[
−1
1

])
, Q(γ4) = Q2

w0 =

(
0
1

)
(0, 0)

q1q2

q3 q4

λ(w0)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 19 / 23

Example with D4-symmetry

Example

γ |G · γ| a|Ti=0 for ei /∈γ a-face

γ0 = cone(0) 1 0 true

γ1 = cone(e1) 4 0 true

γ2 = cone(e1, e2) 4 0 true

γ′2 = cone(e1, e3) 2 〈T1T3〉 false

γ3 = cone(e1, e2, e3) 4 〈T1T3〉 false

γ4 = cone(e1, e2, e3, e4) 1 〈T1T3 − T2T4〉 true

Q(γ0) = cone(0), Q(γ1) = cone
[

1
1

]
, Q(γ2) = cone

([
1
1

]
,

[
−1
1

])
, Q(γ4) = Q2

w0 =

(
0
1

)
(0, 0)

q1q2

q3 q4

λ(w0)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 19 / 23

Moduli Spaces of Stable Maps and Mori Dream Spaces

Mori dream spaces have a finitely generated Cox ring. They are toric iff
the Cox ring is a polynomial ring.

Similar to toric varieties, they admit a
construction as a GIT-quotient (Hu, Keel, 2000). The GIT-fan yields the
Mori chamber decomposition, which describes all birational modifications.

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

1 M0,n for n ≤ 6 is a Mori dream space (Castravet, 2009 for n = 6)

2 M0,n for n > 133 is not a Mori dream space (Castravet, Tevelev,
2013)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 20 / 23

Moduli Spaces of Stable Maps and Mori Dream Spaces

Mori dream spaces have a finitely generated Cox ring. They are toric iff
the Cox ring is a polynomial ring. Similar to toric varieties, they admit a
construction as a GIT-quotient (Hu, Keel, 2000).

The GIT-fan yields the
Mori chamber decomposition, which describes all birational modifications.

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

1 M0,n for n ≤ 6 is a Mori dream space (Castravet, 2009 for n = 6)

2 M0,n for n > 133 is not a Mori dream space (Castravet, Tevelev,
2013)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 20 / 23

Moduli Spaces of Stable Maps and Mori Dream Spaces

Mori dream spaces have a finitely generated Cox ring. They are toric iff
the Cox ring is a polynomial ring. Similar to toric varieties, they admit a
construction as a GIT-quotient (Hu, Keel, 2000). The GIT-fan yields the
Mori chamber decomposition, which describes all birational modifications.

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

1 M0,n for n ≤ 6 is a Mori dream space (Castravet, 2009 for n = 6)

2 M0,n for n > 133 is not a Mori dream space (Castravet, Tevelev,
2013)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 20 / 23

Moduli Spaces of Stable Maps and Mori Dream Spaces

Mori dream spaces have a finitely generated Cox ring. They are toric iff
the Cox ring is a polynomial ring. Similar to toric varieties, they admit a
construction as a GIT-quotient (Hu, Keel, 2000). The GIT-fan yields the
Mori chamber decomposition, which describes all birational modifications.

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

1 M0,n for n ≤ 6 is a Mori dream space (Castravet, 2009 for n = 6)

2 M0,n for n > 133 is not a Mori dream space (Castravet, Tevelev,
2013)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 20 / 23

Moduli Spaces of Stable Maps and Mori Dream Spaces

Mori dream spaces have a finitely generated Cox ring. They are toric iff
the Cox ring is a polynomial ring. Similar to toric varieties, they admit a
construction as a GIT-quotient (Hu, Keel, 2000). The GIT-fan yields the
Mori chamber decomposition, which describes all birational modifications.

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

1 M0,n for n ≤ 6 is a Mori dream space (Castravet, 2009 for n = 6)

2 M0,n for n > 133 is not a Mori dream space (Castravet, Tevelev,
2013)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 20 / 23

Moduli Spaces of Stable Maps and Mori Dream Spaces

Mori dream spaces have a finitely generated Cox ring. They are toric iff
the Cox ring is a polynomial ring. Similar to toric varieties, they admit a
construction as a GIT-quotient (Hu, Keel, 2000). The GIT-fan yields the
Mori chamber decomposition, which describes all birational modifications.

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

1 M0,n for n ≤ 6 is a Mori dream space (Castravet, 2009 for n = 6)

2 M0,n for n > 133 is not a Mori dream space (Castravet, Tevelev,
2013)

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 20 / 23

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5).

Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 21 / 23

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 21 / 23

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 21 / 23

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 21 / 23

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 21 / 23

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 21 / 23

Example: GIT-fan for G(2, 5)

Adjacency graph of the maximal-dimensional GIT-cones and their orbits:

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 22 / 23

Application: Mori Chamber Decomposition of Mov(M0,6)

Moving cone Mov(M0,6) classifies all small modifications (rational maps
which are isomorphisms on open subsets which have a complement of
codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009),

and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 23 / 23

Application: Mori Chamber Decomposition of Mov(M0,6)

Moving cone Mov(M0,6) classifies all small modifications (rational maps
which are isomorphisms on open subsets which have a complement of
codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009), and 225
relations (Bernal Guillen, 2012),

and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 23 / 23

Application: Mori Chamber Decomposition of Mov(M0,6)

Moving cone Mov(M0,6) classifies all small modifications (rational maps
which are isomorphisms on open subsets which have a complement of
codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009), and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.

The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 23 / 23

Application: Mori Chamber Decomposition of Mov(M0,6)

Moving cone Mov(M0,6) classifies all small modifications (rational maps
which are isomorphisms on open subsets which have a complement of
codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009), and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 23 / 23

Application: Mori Chamber Decomposition of Mov(M0,6)

Moving cone Mov(M0,6) classifies all small modifications (rational maps
which are isomorphisms on open subsets which have a complement of
codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009), and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 23 / 23

References

J. Boehm, S. Keicher, Y. Ren. Computing GIT-fans with symmetry and
the Mori chamber decomposition of M0,6, arXiv:1603.09241 (2016).

J. Boehm, S. Keicher, Y. Ren. gitfan.lib. A Singular library for computing
the GIT fan, Singular distribution.
S. Keicher. Computing the GIT-fan, Internat. J. Algebra Comput. (2012).

D. Mumford, J. Fogarty, F. Kirwan. Geometric invariant theory.
Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer (1994).

I. V. Dolgachev and Y. Hu. Variation of geometric invariant theory
quotients. Publ. Math., Inst. Hautes Etud. Sci. (1998).

F. Berchtold, J. Hausen. GIT equivalence beyond the ample cone.
Michigan Math. J. (2006).

I. Arzhantsev, U. Derenthal, J. Hausen, A. Laface. Cox Rings, Cambridge
studies in advanced mathematics (2014).

A.-M. Castravet. The Cox ring of M0,6. Trans. Amer. Math. Soc. (2009).

M. M. Bernal Guillen. Relations in the Cox Ring of M0,6. PhD (2012).

Janko Boehm (TU-KL) Computing GIT-Fans with Symmetry 29 January 2016 23 / 23

https://arxiv.org/abs/1603.09241

	Computing GIT-Fans with Symmetry
	Quotients
	Outline
	Good Quotients and GIT
	GIT-Fan
	Computing GIT-Fans
	Implementation
	Symmetric GIT-Algorithm
	Applications
	References

