
Fundamental and Advanced Algorithms in Singular

Janko Boehm, Yue Ren

University of Kaiserslautern

3C in G Workshop on Computational Algebra
Cambridge, April 18, 2017

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 1 / 76

Singular

Computer algebra system for polynomial computations, over 30
development teams worldwide, over 140 libraries for advanced topics.

https://www.singular.uni-kl.de/

Special emphasis on algebraic geometry, commutative and
non-commutative algebra, singularity theory, packages for convex and
tropical geometry.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 2 / 76

https://www.singular.uni-kl.de/

Singular

Computer algebra system for polynomial computations, over 30
development teams worldwide, over 140 libraries for advanced topics.

https://www.singular.uni-kl.de/

Special emphasis on algebraic geometry, commutative and
non-commutative algebra, singularity theory, packages for convex and
tropical geometry.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 2 / 76

https://www.singular.uni-kl.de/

Outline

Warm-up, Gröbner bases

Normalization, Adjoint Curves, Classification of Singularities

Parallel Computations

Resolution of Singularities

Modular Methods

Massively Parallel Computations

Primary Decomposition

Standard Bases and Associated Graded Ring

Convex Geometry

Computation of Tropical Varieties

Computing the GIT-Fan

Feynman Integrals and Tropical Mirror Symmetry

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 3 / 76

Outline

Warm-up, Gröbner bases

Normalization, Adjoint Curves, Classification of Singularities

Parallel Computations

Resolution of Singularities

Modular Methods

Massively Parallel Computations

Primary Decomposition

Standard Bases and Associated Graded Ring

Convex Geometry

Computation of Tropical Varieties

Computing the GIT-Fan

Feynman Integrals and Tropical Mirror Symmetry

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 3 / 76

Outline

Warm-up, Gröbner bases

Normalization, Adjoint Curves, Classification of Singularities

Parallel Computations

Resolution of Singularities

Modular Methods

Massively Parallel Computations

Primary Decomposition

Standard Bases and Associated Graded Ring

Convex Geometry

Computation of Tropical Varieties

Computing the GIT-Fan

Feynman Integrals and Tropical Mirror Symmetry

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 3 / 76

Parametrizing Rational Curves

Example

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 4 / 76

Parametrizing Rational Curves

Example

We consider the degree-5 curve with equation

x5 + 10x4y + 20x3y2 + 130x2y3 − 20xy4 + 20y5 − 2x4z

− 40x3yz − 150x2y2z − 90xy3z − 40y4z + x3z2 + 30x2yz2

+ 110xy2z2 + 20y3z2 = 0.

Genus Formula. pg (C) = pa(C)− δ(C) = pa(C)−∑P∈Sing(Γ)δP(C)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 5 / 76

Parametrizing Rational Curves

Example

We consider the degree-5 curve with equation

x5 + 10x4y + 20x3y2 + 130x2y3 − 20xy4 + 20y5 − 2x4z

− 40x3yz − 150x2y2z − 90xy3z − 40y4z + x3z2 + 30x2yz2

+ 110xy2z2 + 20y3z2 = 0.

Genus Formula. pg (C) = pa(C)− δ(C) = pa(C)−∑P∈Sing(Γ)δP(C)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 5 / 76

Parametrizing Rational Curves

Example

We consider the degree-5 curve with equation

x5 + 10x4y + 20x3y2 + 130x2y3 − 20xy4 + 20y5 − 2x4z

− 40x3yz − 150x2y2z − 90xy3z − 40y4z + x3z2 + 30x2yz2

+ 110xy2z2 + 20y3z2 = 0.

Genus Formula. pg (C) = pa(C)− δ(C) = pa(C)−∑P∈Sing(Γ)δP(C)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 5 / 76

Parametrizing Rational Curves

Example
> ring R = 0, (x,y,z), dp;

> poly f = x5+10x4y+20x3y2+130x2y3-20xy4+20y5-2x4z-40x3yz-150x2y2z

-90xy3z-40y4z+x3z2+30x2yz2+110xy2z2+20y3z2;

> LIB "paraplanecurves.lib";

> genus(f);

0

> paraPlaneCurve(f);

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 6 / 76

The Parametrization Algorithm

Example
> ideal AI = adjointIdeal(f); // requires normalization, integral bases

> AI;

[1]=y3-y2z

[2]=xy2-xyz

[3]=x2y-xyz

[4]=x3-x2z

> def Rn = mapToRatNormCurve(f,AI);

> setring(Rn);

> RNC;

RNC[1]=y(2)*y(3)-y(1)*y(4)

RNC[2]=20*y(1)*y(2)-20*y(2)^2+130*y(1)*y(4)

+20*y(2)*y(4)+10*y(3)*y(4)+y(4)^2

RNC[3]=20*y(1)^2-20*y(1)*y(2)+130*y(1)*y(3)

+10*y(3)^2+20*y(1)*y(4)+y(3)*y(4)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 7 / 76

The Parametrization Algorithm

Example
> ideal AI = adjointIdeal(f); // requires normalization, integral bases

> AI;

[1]=y3-y2z

[2]=xy2-xyz

[3]=x2y-xyz

[4]=x3-x2z

> def Rn = mapToRatNormCurve(f,AI);

> setring(Rn);

> RNC;

RNC[1]=y(2)*y(3)-y(1)*y(4)

RNC[2]=20*y(1)*y(2)-20*y(2)^2+130*y(1)*y(4)

+20*y(2)*y(4)+10*y(3)*y(4)+y(4)^2

RNC[3]=20*y(1)^2-20*y(1)*y(2)+130*y(1)*y(3)

+10*y(3)^2+20*y(1)*y(4)+y(3)*y(4)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 7 / 76

The Parametrization Algorithm

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 8 / 76

The Parametrization Algorithm

Example
> LIB "sing.lib";

> radical(slocus(RNC));

[1]=y(4)

[2]=y(3)

[2]=y(2)

[1]=y(1)

> rncAntiCanonicalMap(RNC);

[1]=2*y(2)+13*y(4)

[2]=y(4)

Remark

May require quadratic field extension in even-degree case.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 9 / 76

The Parametrization Algorithm

Example
> LIB "sing.lib";

> radical(slocus(RNC));

[1]=y(4)

[2]=y(3)

[2]=y(2)

[1]=y(1)

> rncAntiCanonicalMap(RNC);

[1]=2*y(2)+13*y(4)

[2]=y(4)

Remark

May require quadratic field extension in even-degree case.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 9 / 76

The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power.

In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G) = 0

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 10 / 76

The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).

Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G) = 0

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 10 / 76

The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G) = 0

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 10 / 76

The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉

Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G) = 0

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 10 / 76

The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.

Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G) = 0

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 10 / 76

The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G) = 0

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 10 / 76

The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G) = 0

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 10 / 76

The Main Computational Tool: Gröbner Bases

Example

Gröbner Bases can be used to:

eliminate variables (→ birational geometry),

ideal intersections,

compute ideal quotients

(I : J) = {a ∈ R | aJ ⊂ I}

for ideals I , J ⊂ R,

saturations,

syzygies (→ homological algebra).

Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative
Algebra. Springer.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 11 / 76

Normalization

Setup: A = K [X]/I domain.

Definition

The normalization A of A is the integral closure of A in its quotient field
Q(A).

We call A normal if A = A.

Theorem (Noether)

A is a finitely generated A-module.

Example

Curve I =
〈
x3 + x2 − y2

〉
⊂ K [x , y]

A = K [x , y]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= A
x 7→ t2 − 1
y 7→ t3 − t

As an A-module A =
〈

1, y
x

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 12 / 76

Normalization

Setup: A = K [X]/I domain.

Definition

The normalization A of A is the integral closure of A in its quotient field
Q(A). We call A normal if A = A.

Theorem (Noether)

A is a finitely generated A-module.

Example

Curve I =
〈
x3 + x2 − y2

〉
⊂ K [x , y]

A = K [x , y]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= A
x 7→ t2 − 1
y 7→ t3 − t

As an A-module A =
〈

1, y
x

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 12 / 76

Normalization

Setup: A = K [X]/I domain.

Definition

The normalization A of A is the integral closure of A in its quotient field
Q(A). We call A normal if A = A.

Theorem (Noether)

A is a finitely generated A-module.

Example

Curve I =
〈
x3 + x2 − y2

〉
⊂ K [x , y]

A = K [x , y]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= A
x 7→ t2 − 1
y 7→ t3 − t

As an A-module A =
〈

1, y
x

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 12 / 76

Normalization

Setup: A = K [X]/I domain.

Definition

The normalization A of A is the integral closure of A in its quotient field
Q(A). We call A normal if A = A.

Theorem (Noether)

A is a finitely generated A-module.

Example

Curve I =
〈
x3 + x2 − y2

〉
⊂ K [x , y]

A = K [x , y]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= A
x 7→ t2 − 1
y 7→ t3 − t

As an A-module A =
〈

1, y
x

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 12 / 76

Normalization

Setup: A = K [X]/I domain.

Definition

The normalization A of A is the integral closure of A in its quotient field
Q(A). We call A normal if A = A.

Theorem (Noether)

A is a finitely generated A-module.

Example

Curve I =
〈
x3 + x2 − y2

〉
⊂ K [x , y]

A = K [x , y]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= A
x 7→ t2 − 1
y 7→ t3 − t

As an A-module A =
〈

1, y
x

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 12 / 76

Normalization

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1
g (gJ :A J) ⊂ A

a 7→ a·
ϕ 7→ ϕ(g)

g

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =
1
g (gJi :Ai

Ji) Ji =
√
JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1.

Terminates since A is Noetherian.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 13 / 76

Normalization

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1
g (gJ :A J) ⊂ A

a 7→ a·
ϕ 7→ ϕ(g)

g

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =
1
g (gJi :Ai

Ji) Ji =
√
JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1.

Terminates since A is Noetherian.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 13 / 76

Normalization

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1
g (gJ :A J) ⊂ A

a 7→ a·
ϕ 7→ ϕ(g)

g

Algorithm

Starting from A0 = A and J0 = J,

setting

Ai+1 =
1
g (gJi :Ai

Ji) Ji =
√
JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1.

Terminates since A is Noetherian.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 13 / 76

Normalization

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1
g (gJ :A J) ⊂ A

a 7→ a·
ϕ 7→ ϕ(g)

g

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =
1
g (gJi :Ai

Ji) Ji =
√
JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1.

Terminates since A is Noetherian.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 13 / 76

Normalization

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1
g (gJ :A J) ⊂ A

a 7→ a·
ϕ 7→ ϕ(g)

g

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =
1
g (gJi :Ai

Ji) Ji =
√
JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1.

Terminates since A is Noetherian.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 13 / 76

Grauert-Remmert criterion

Non-normal locus N(A) is contained in singular locus Sing(A).

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A be an ideal with J =
√
J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ a·

is an isomorphism.

=⇒ For J =
√

Jac(I) algorithm terminates with Am = Am+1 = A, since:

Lemma

N(Ai) ⊂ V (
√
JAi)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 14 / 76

Grauert-Remmert criterion

Non-normal locus N(A) is contained in singular locus Sing(A).

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A be an ideal with J =
√
J

and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ a·

is an isomorphism.

=⇒ For J =
√

Jac(I) algorithm terminates with Am = Am+1 = A, since:

Lemma

N(Ai) ⊂ V (
√
JAi)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 14 / 76

Grauert-Remmert criterion

Non-normal locus N(A) is contained in singular locus Sing(A).

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A be an ideal with J =
√
J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ a·

is an isomorphism.

=⇒ For J =
√

Jac(I) algorithm terminates with Am = Am+1 = A, since:

Lemma

N(Ai) ⊂ V (
√
JAi)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 14 / 76

Grauert-Remmert criterion

Non-normal locus N(A) is contained in singular locus Sing(A).

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A be an ideal with J =
√
J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ a·

is an isomorphism.

=⇒ For J =
√

Jac(I) algorithm terminates with Am = Am+1 = A, since:

Lemma

N(Ai) ⊂ V (
√
JAi)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 14 / 76

Grauert-Remmert criterion

Non-normal locus N(A) is contained in singular locus Sing(A).

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A be an ideal with J =
√
J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ a·

is an isomorphism.

=⇒ For J =
√

Jac(I) algorithm terminates with Am = Am+1 = A,

since:

Lemma

N(Ai) ⊂ V (
√
JAi)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 14 / 76

Grauert-Remmert criterion

Non-normal locus N(A) is contained in singular locus Sing(A).

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A be an ideal with J =
√
J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ a·

is an isomorphism.

=⇒ For J =
√

Jac(I) algorithm terminates with Am = Am+1 = A, since:

Lemma

N(Ai) ⊂ V (
√
JAi)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 14 / 76

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose
Sing(A) = {P1, . . . ,Pr}

and
A ⊂ Bi ⊂ A

is the ring given by the normalization algorithm applied to Pi instead of J.
Then

(Bi)Pi
= APi

(Bi)Q = AQ for all Pi 6= Q ∈ SpecA,

and
A = B1 + . . . + Br .

We call Bi the minimal local contribution to A at Pi .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 15 / 76

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose
Sing(A) = {P1, . . . ,Pr}

and
A ⊂ Bi ⊂ A

is the ring given by the normalization algorithm applied to Pi instead of J

.
Then

(Bi)Pi
= APi

(Bi)Q = AQ for all Pi 6= Q ∈ SpecA,

and
A = B1 + . . . + Br .

We call Bi the minimal local contribution to A at Pi .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 15 / 76

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose
Sing(A) = {P1, . . . ,Pr}

and
A ⊂ Bi ⊂ A

is the ring given by the normalization algorithm applied to Pi instead of J.
Then

(Bi)Pi
= APi

(Bi)Q = AQ for all Pi 6= Q ∈ SpecA,

and
A = B1 + . . . + Br .

We call Bi the minimal local contribution to A at Pi .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 15 / 76

Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose
Sing(A) = {P1, . . . ,Pr}

and
A ⊂ Bi ⊂ A

is the ring given by the normalization algorithm applied to Pi instead of J.
Then

(Bi)Pi
= APi

(Bi)Q = AQ for all Pi 6= Q ∈ SpecA,

and
A = B1 + . . . + Br .

We call Bi the minimal local contribution to A at Pi .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 15 / 76

Adjoint ideals

Setup: Γ ⊂ Pr integral, non-degenerate projective curve, π : Γ→ Γ
normalization map, I (Γ) $ I ⊂ k [x0, ..., xr] saturated homogeneous ideal.

Let H be pullback of hyperplane, ∆(I) pullback of Proj(S/I). Then

0→ ĨOΓ → π∗(ĨOΓ)→ F → 0
gives for m� 0 linear maps

0→ Im/I (Γ)m
$m→ H0

(
Γ,OΓ (mH − ∆(I))

)
→ H0 (Γ,F)→ 0

Definition

I is an adjoint ideal of Γ if $m surjective for m� 0.

h0 (Γ,F) = ∑P∈Sing(Γ) `(IPOΓ,P/IP) =⇒

Theorem

I adjoint ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

Conductor is largest ideal with this property.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 16 / 76

Adjoint ideals

Setup: Γ ⊂ Pr integral, non-degenerate projective curve, π : Γ→ Γ
normalization map, I (Γ) $ I ⊂ k [x0, ..., xr] saturated homogeneous ideal.
Let H be pullback of hyperplane, ∆(I) pullback of Proj(S/I).

Then

0→ ĨOΓ → π∗(ĨOΓ)→ F → 0
gives for m� 0 linear maps

0→ Im/I (Γ)m
$m→ H0

(
Γ,OΓ (mH − ∆(I))

)
→ H0 (Γ,F)→ 0

Definition

I is an adjoint ideal of Γ if $m surjective for m� 0.

h0 (Γ,F) = ∑P∈Sing(Γ) `(IPOΓ,P/IP) =⇒

Theorem

I adjoint ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

Conductor is largest ideal with this property.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 16 / 76

Adjoint ideals

Setup: Γ ⊂ Pr integral, non-degenerate projective curve, π : Γ→ Γ
normalization map, I (Γ) $ I ⊂ k [x0, ..., xr] saturated homogeneous ideal.
Let H be pullback of hyperplane, ∆(I) pullback of Proj(S/I). Then

0→ ĨOΓ → π∗(ĨOΓ)→ F → 0

gives for m� 0 linear maps

0→ Im/I (Γ)m
$m→ H0

(
Γ,OΓ (mH − ∆(I))

)
→ H0 (Γ,F)→ 0

Definition

I is an adjoint ideal of Γ if $m surjective for m� 0.

h0 (Γ,F) = ∑P∈Sing(Γ) `(IPOΓ,P/IP) =⇒

Theorem

I adjoint ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

Conductor is largest ideal with this property.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 16 / 76

Adjoint ideals

Setup: Γ ⊂ Pr integral, non-degenerate projective curve, π : Γ→ Γ
normalization map, I (Γ) $ I ⊂ k [x0, ..., xr] saturated homogeneous ideal.
Let H be pullback of hyperplane, ∆(I) pullback of Proj(S/I). Then

0→ ĨOΓ → π∗(ĨOΓ)→ F → 0
gives for m� 0 linear maps

0→ Im/I (Γ)m
$m→ H0

(
Γ,OΓ (mH − ∆(I))

)
→ H0 (Γ,F)→ 0

Definition

I is an adjoint ideal of Γ if $m surjective for m� 0.

h0 (Γ,F) = ∑P∈Sing(Γ) `(IPOΓ,P/IP) =⇒

Theorem

I adjoint ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

Conductor is largest ideal with this property.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 16 / 76

Adjoint ideals

Setup: Γ ⊂ Pr integral, non-degenerate projective curve, π : Γ→ Γ
normalization map, I (Γ) $ I ⊂ k [x0, ..., xr] saturated homogeneous ideal.
Let H be pullback of hyperplane, ∆(I) pullback of Proj(S/I). Then

0→ ĨOΓ → π∗(ĨOΓ)→ F → 0
gives for m� 0 linear maps

0→ Im/I (Γ)m
$m→ H0

(
Γ,OΓ (mH − ∆(I))

)
→ H0 (Γ,F)→ 0

Definition

I is an adjoint ideal of Γ if $m surjective for m� 0.

h0 (Γ,F) = ∑P∈Sing(Γ) `(IPOΓ,P/IP) =⇒

Theorem

I adjoint ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

Conductor is largest ideal with this property.
Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 16 / 76

Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal
G ⊂ K [x0, . . . , xr] with

GP = COΓ,P for all P ∈ Sing(Γ).

Applications:

Example

If Γ is plane curve of degree n, then Gn−3 cuts out canonical linear series.

Example

If Γ is plane rational of degree n then Gn−2 maps Γ to rational normal
curve of degree n− 2 in Pn−2.

Example

Brill-Noether-Algorithm for computing Riemann-Roch spaces.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 17 / 76

Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal
G ⊂ K [x0, . . . , xr] with

GP = COΓ,P for all P ∈ Sing(Γ).

Applications:

Example

If Γ is plane curve of degree n, then Gn−3 cuts out canonical linear series.

Example

If Γ is plane rational of degree n then Gn−2 maps Γ to rational normal
curve of degree n− 2 in Pn−2.

Example

Brill-Noether-Algorithm for computing Riemann-Roch spaces.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 17 / 76

Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal
G ⊂ K [x0, . . . , xr] with

GP = COΓ,P for all P ∈ Sing(Γ).

Applications:

Example

If Γ is plane curve of degree n, then Gn−3 cuts out canonical linear series.

Example

If Γ is plane rational of degree n then Gn−2 maps Γ to rational normal
curve of degree n− 2 in Pn−2.

Example

Brill-Noether-Algorithm for computing Riemann-Roch spaces.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 17 / 76

Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal
G ⊂ K [x0, . . . , xr] with

GP = COΓ,P for all P ∈ Sing(Γ).

Applications:

Example

If Γ is plane curve of degree n, then Gn−3 cuts out canonical linear series.

Example

If Γ is plane rational of degree n then Gn−2 maps Γ to rational normal
curve of degree n− 2 in Pn−2.

Example

Brill-Noether-Algorithm for computing Riemann-Roch spaces.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 17 / 76

Example

Minimal generators of G for rational curve of degree 5:

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 18 / 76

Example

Minimal generators of G for rational curve of degree 5:

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 18 / 76

Example

Minimal generators of G for rational curve of degree 5:

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 18 / 76

Example

Minimal generators of G for rational curve of degree 5:

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 18 / 76

Example

Minimal generators of G for rational curve of degree 5:

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 18 / 76

Example

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 19 / 76

Local-to-global algorithm

Definition

The local adjoint ideal of Γ at P ∈ Sing Γ is the largest homogeneous
ideal G(P) ⊂ k [x0, . . . , xr] with

G(P)P = COΓ,P

Lemma (BDLP, 2015)

G =
⋂

P∈Sing Γ
G(P)

The G(P) can be computed in parallel via normalization.

Algorithm (BDLP, 2015)

If 1
dU is the minimal local contribution at P then

G(P) = (d : U)h

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 20 / 76

Local-to-global algorithm

Definition

The local adjoint ideal of Γ at P ∈ Sing Γ is the largest homogeneous
ideal G(P) ⊂ k [x0, . . . , xr] with

G(P)P = COΓ,P

Lemma (BDLP, 2015)

G =
⋂

P∈Sing Γ
G(P)

The G(P) can be computed in parallel via normalization.

Algorithm (BDLP, 2015)

If 1
dU is the minimal local contribution at P then

G(P) = (d : U)h

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 20 / 76

Local-to-global algorithm

Definition

The local adjoint ideal of Γ at P ∈ Sing Γ is the largest homogeneous
ideal G(P) ⊂ k [x0, . . . , xr] with

G(P)P = COΓ,P

Lemma (BDLP, 2015)

G =
⋂

P∈Sing Γ
G(P)

The G(P) can be computed in parallel via normalization.

Algorithm (BDLP, 2015)

If 1
dU is the minimal local contribution at P then

G(P) = (d : U)h

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 20 / 76

Special types of singularities

If Γ ⊂ P2 has a singularity of type An at P = (0 : 0 : 1), then given by

f = T 2 +W n+1 with T ,W ∈ C[[x , y]].

Compute Tj = T +O(j + 1) inductively.

Lemma

If P = (0, 0) is of type An and s =
⌊
n+1
2

⌋
, then

G(P) = 〈x s , Ts−1, y s〉h ⊂ C[x , y , z]

Similar results for Dn, En and other singularities in Arnold’s list.

Example

f = x4 − y2 + x5 with A3 singularity. Then G(P) =
〈
x2, y

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 21 / 76

Special types of singularities

If Γ ⊂ P2 has a singularity of type An at P = (0 : 0 : 1), then given by

f = T 2 +W n+1 with T ,W ∈ C[[x , y]].

Compute Tj = T +O(j + 1) inductively.

Lemma

If P = (0, 0) is of type An and s =
⌊
n+1
2

⌋
, then

G(P) = 〈x s , Ts−1, y s〉h ⊂ C[x , y , z]

Similar results for Dn, En and other singularities in Arnold’s list.

Example

f = x4 − y2 + x5 with A3 singularity. Then G(P) =
〈
x2, y

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 21 / 76

Special types of singularities

If Γ ⊂ P2 has a singularity of type An at P = (0 : 0 : 1), then given by

f = T 2 +W n+1 with T ,W ∈ C[[x , y]].

Compute Tj = T +O(j + 1) inductively.

Lemma

If P = (0, 0) is of type An and s =
⌊
n+1
2

⌋
, then

G(P) = 〈x s , Ts−1, y s〉h ⊂ C[x , y , z]

Similar results for Dn, En and other singularities in Arnold’s list.

Example

f = x4 − y2 + x5 with A3 singularity. Then G(P) =
〈
x2, y

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 21 / 76

Special types of singularities

If Γ ⊂ P2 has a singularity of type An at P = (0 : 0 : 1), then given by

f = T 2 +W n+1 with T ,W ∈ C[[x , y]].

Compute Tj = T +O(j + 1) inductively.

Lemma

If P = (0, 0) is of type An and s =
⌊
n+1
2

⌋
, then

G(P) = 〈x s , Ts−1, y s〉h ⊂ C[x , y , z]

Similar results for Dn, En and other singularities in Arnold’s list.

Example

f = x4 − y2 + x5 with A3 singularity. Then G(P) =
〈
x2, y

〉
.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 21 / 76

Parallel Computations in Singular

Example
> LIB("parallel.lib","random.lib");

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 22 / 76

Parallel Computations in Singular

Example
> LIB("parallel.lib","random.lib");

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}

> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 22 / 76

Parallel Computations in Singular

Example
> LIB("parallel.lib","random.lib");

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 22 / 76

Parallel Computations in Singular

Example
> LIB("parallel.lib","random.lib");

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 22 / 76

Parallel Computations in Singular

Example
> LIB("parallel.lib","random.lib");

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 22 / 76

Parallelization

There are algorithms whose basic strategy is inherently parallel, whereas
others are sequential in nature.

Example

Normalization is inherently sequential.

Local-to-global algorithms for normalization and adjoint ideal are
parallel, if the singular locus decomposes.

Villamayor’s constructive version of Hironaka’s desingularization
theorem is inherently parallel by the iterative use of blow-ups in charts.

Modular methods can be used to turn sequential algorithms over Q

into parallel ones.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 23 / 76

Parallelization

There are algorithms whose basic strategy is inherently parallel, whereas
others are sequential in nature.

Example

Normalization is inherently sequential.

Local-to-global algorithms for normalization and adjoint ideal are
parallel, if the singular locus decomposes.

Villamayor’s constructive version of Hironaka’s desingularization
theorem is inherently parallel by the iterative use of blow-ups in charts.

Modular methods can be used to turn sequential algorithms over Q

into parallel ones.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 23 / 76

Example: Resolution of Singularities

Theorem (Hironaka, 1964)

For every algebraic variety over a field K with charK = 0 a
desingularization can be obtained by a finite sequence of blow-ups along
smooth centers.

Example

Blow-up of the node resolves the singularity

←−

by replacing it by a line of points corresponding to its tangent directions,
hence separating the two branches of the curve.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 24 / 76

Example: Resolution of Singularities

Theorem (Hironaka, 1964)

For every algebraic variety over a field K with charK = 0 a
desingularization can be obtained by a finite sequence of blow-ups along
smooth centers.

Example

Blow-up of the node resolves the singularity

←−

by replacing it by a line of points corresponding to its tangent directions,
hence separating the two branches of the curve.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 24 / 76

Hironaka Resolution of Singularities

Example:
x2 − y2z2 = 0

Gluing StepResolution Step

Search for
Center of
Blowup

Blowup
in

Charts required to draw information
from resolution data

Traversal of Tree of Charts

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 25 / 76

Hironaka Resolution of Singularities

Example:
x2 − y2z2 = 0

Gluing StepResolution Step

Search for
Center of
Blowup

Blowup
in

Charts required to draw information
from resolution data

Traversal of Tree of Charts

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 25 / 76

Hironaka Resolution of Singularities

Example
> LIB "resolve.lib";

> ring R= 0,(x,y,z),dp;

> ideal I = x2-y2z2;

> list L = resolve(I);

> def S1 = L[1][1];

> setring S1;

> showBO(BO);

==== Ambient Space:

[1]=0

==== Ideal of Variety:

[1]=y(1)^2-1

==== Exceptional Divisors:

...

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 26 / 76

Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76

Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76

Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.

2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76

Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76

Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.

Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76

Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76

Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76

Modular computations

Example

Compute
3

4
+

1

3
=

13

12

using modular techniques:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

3
4 7→ (2 , 6 , 9 , 26)

+

1
3 7→ (2 , 5 , 4 , 34)

q

(4 , 4 , 2 , 60) 7→ 22684

How to obtain a rational number from 22684?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 28 / 76

Modular computations

Example

Compute
3

4
+

1

3
=

13

12

using modular techniques:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

3
4 7→ (2 , 6 , 9 , 26)

+

1
3 7→ (2 , 5 , 4 , 34)

q

(4 , 4 , 2 , 60) 7→ 22684

How to obtain a rational number from 22684?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 28 / 76

Modular computations

Example

Compute
3

4
+

1

3
=

13

12

using modular techniques:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

3
4 7→ (2 , 6 , 9 , 26)

+

1
3 7→ (2 , 5 , 4 , 34)

q

(4 , 4 , 2 , 60) 7→ 22684

How to obtain a rational number from 22684?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 28 / 76

Modular computations

Example

Compute
3

4
+

1

3
=

13

12

using modular techniques:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

3
4 7→ (2 , 6 , 9 , 26)

+

1
3 7→ (2 , 5 , 4 , 34)

q

(4 , 4 , 2 , 60)

7→ 22684

How to obtain a rational number from 22684?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 28 / 76

Modular computations

Example

Compute
3

4
+

1

3
=

13

12

using modular techniques:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

3
4 7→ (2 , 6 , 9 , 26)

+

1
3 7→ (2 , 5 , 4 , 34)

q

(4 , 4 , 2 , 60) 7→ 22684

How to obtain a rational number from 22684?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 28 / 76

Modular computations

Example

Compute
3

4
+

1

3
=

13

12

using modular techniques:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

3
4 7→ (2 , 6 , 9 , 26)

+

1
3 7→ (2 , 5 , 4 , 34)

q

(4 , 4 , 2 , 60) 7→ 22684

How to obtain a rational number from 22684?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 28 / 76

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b,N) = 1

|a| , |b| ≤
√
(N − 1)/2

}
−→ Z/N

a
b 7−→ a · b−1

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b, 38885) = 1

|a| , |b| ≤ 139

}
−→ Z/38885

13
12 7−→ 22684

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 29 / 76

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b,N) = 1

|a| , |b| ≤
√
(N − 1)/2

}
−→ Z/N

a
b 7−→ a · b−1

is injective.

Efficient algorithm for preimage.

Example

Indeed, in the above example{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b, 38885) = 1

|a| , |b| ≤ 139

}
−→ Z/38885

13
12 7−→ 22684

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 29 / 76

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b,N) = 1

|a| , |b| ≤
√
(N − 1)/2

}
−→ Z/N

a
b 7−→ a · b−1

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b, 38885) = 1

|a| , |b| ≤ 139

}
−→ Z/38885

13
12 7−→ 22684

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 29 / 76

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b,N) = 1

|a| , |b| ≤
√
(N − 1)/2

}
−→ Z/N

a
b 7−→ a · b−1

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b, 38885) = 1

|a| , |b| ≤ 139

}
−→ Z/38885

13
12 7−→ 22684

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 29 / 76

Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b,N) = 1

|a| , |b| ≤
√
(N − 1)/2

}
−→ Z/N

a
b 7−→ a · b−1

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b, 38885) = 1

|a| , |b| ≤ 139

}
−→ Z/38885

13
12 7−→ 22684

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 29 / 76

Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 30 / 76

Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 30 / 76

Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 30 / 76

Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 30 / 76

Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 30 / 76

Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 30 / 76

Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 30 / 76

Bad primes in Gröbner basis computations

For G ⊂ K [X] = K [x1, . . . , xn] and a monomial ordering >, let LM(G) be
the set of lead monomials of G .

For G ⊂ Z[X] define

Gp := G ⊂ Z/p [X].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76

Bad primes in Gröbner basis computations

For G ⊂ K [X] = K [x1, . . . , xn] and a monomial ordering >, let LM(G) be
the set of lead monomials of G . For G ⊂ Z[X] define

Gp := G ⊂ Z/p [X].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76

Bad primes in Gröbner basis computations

For G ⊂ K [X] = K [x1, . . . , xn] and a monomial ordering >, let LM(G) be
the set of lead monomials of G . For G ⊂ Z[X] define

Gp := G ⊂ Z/p [X].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X] with fi primitve,

and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76

Bad primes in Gröbner basis computations

For G ⊂ K [X] = K [x1, . . . , xn] and a monomial ordering >, let LM(G) be
the set of lead monomials of G . For G ⊂ Z[X] define

Gp := G ⊂ Z/p [X].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76

Bad primes in Gröbner basis computations

For G ⊂ K [X] = K [x1, . . . , xn] and a monomial ordering >, let LM(G) be
the set of lead monomials of G . For G ⊂ Z[X] define

Gp := G ⊂ Z/p [X].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76

Bad primes in Gröbner basis computations

For G ⊂ K [X] = K [x1, . . . , xn] and a monomial ordering >, let LM(G) be
the set of lead monomials of G . For G ⊂ Z[X] define

Gp := G ⊂ Z/p [X].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X].

Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76

Bad primes in Gröbner basis computations

For G ⊂ K [X] = K [x1, . . . , xn] and a monomial ordering >, let LM(G) be
the set of lead monomials of G . For G ⊂ Z[X] define

Gp := G ⊂ Z/p [X].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76

Bad primes in Gröbner basis computations

For G ⊂ K [X] = K [x1, . . . , xn] and a monomial ordering >, let LM(G) be
the set of lead monomials of G . For G ⊂ Z[X] define

Gp := G ⊂ Z/p [X].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76

Bad primes in Gröbner basis computations

Example
> option("redSB");

> ring R = integer,(x, y, z),lp;

> poly f = x7y5 + x2yz9 + xz11 + y3z9;

> ideal I = groebner(ideal(diff(f, x), diff(f, y), diff(f,z)));

> apply(list(I[1..size(I)]),leadcoef);

13781115527868730344777310464613260 83521912290113517241074608876444 60

12 4 12 12 45349632 12 1473863040 12 22674816 12 3888 12 12 12 13608 12

108 54 6 2 27 3 1 4 2 2 1 216 1 2 3 1 540 12 108 27 3 1 9 3 1 1 1 1 1 7

1 5 1 1

and the bad primes are the prime factors

p = 2, 3, 5, 7, 11, 13, 257, 247072949, 328838088993550682027

Note: The lead coefficients of the Gröbner basis over Q involve only the
prime factors 2, 3, 5, 7, 13.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 32 / 76

Bad primes in Gröbner basis computations

Example
> option("redSB");

> ring R = integer,(x, y, z),lp;

> poly f = x7y5 + x2yz9 + xz11 + y3z9;

> ideal I = groebner(ideal(diff(f, x), diff(f, y), diff(f,z)));

> apply(list(I[1..size(I)]),leadcoef);

13781115527868730344777310464613260 83521912290113517241074608876444 60

12 4 12 12 45349632 12 1473863040 12 22674816 12 3888 12 12 12 13608 12

108 54 6 2 27 3 1 4 2 2 1 216 1 2 3 1 540 12 108 27 3 1 9 3 1 1 1 1 1 7

1 5 1 1

and the bad primes are the prime factors

p = 2, 3, 5, 7, 11, 13, 257, 247072949, 328838088993550682027

Note: The lead coefficients of the Gröbner basis over Q involve only the
prime factors 2, 3, 5, 7, 13.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 32 / 76

Bad primes in Gröbner basis computations

Example
> option("redSB");

> ring R = integer,(x, y, z),lp;

> poly f = x7y5 + x2yz9 + xz11 + y3z9;

> ideal I = groebner(ideal(diff(f, x), diff(f, y), diff(f,z)));

> apply(list(I[1..size(I)]),leadcoef);

13781115527868730344777310464613260 83521912290113517241074608876444 60

12 4 12 12 45349632 12 1473863040 12 22674816 12 3888 12 12 12 13608 12

108 54 6 2 27 3 1 4 2 2 1 216 1 2 3 1 540 12 108 27 3 1 9 3 1 1 1 1 1 7

1 5 1 1

and the bad primes are the prime factors

p = 2, 3, 5, 7, 11, 13, 257, 247072949, 328838088993550682027

Note: The lead coefficients of the Gröbner basis over Q involve only the
prime factors 2, 3, 5, 7, 13.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 32 / 76

Bad primes in Gröbner basis computations

Example
> option("redSB");

> ring R = integer,(x, y, z),lp;

> poly f = x7y5 + x2yz9 + xz11 + y3z9;

> ideal I = groebner(ideal(diff(f, x), diff(f, y), diff(f,z)));

> apply(list(I[1..size(I)]),leadcoef);

13781115527868730344777310464613260 83521912290113517241074608876444 60

12 4 12 12 45349632 12 1473863040 12 22674816 12 3888 12 12 12 13608 12

108 54 6 2 27 3 1 4 2 2 1 216 1 2 3 1 540 12 108 27 3 1 9 3 1 1 1 1 1 7

1 5 1 1

and the bad primes are the prime factors

p = 2, 3, 5, 7, 11, 13, 257, 247072949, 328838088993550682027

Note: The lead coefficients of the Gröbner basis over Q involve only the
prime factors 2, 3, 5, 7, 13.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 32 / 76

Bad primes

Classification of bad primes:

Type 1: Input modulo p not valid (no problem)

Type 2: Failure in the course of the algorithm (e.g. matrix not
invertible modulo p, wastes computation time if happens)

Type 3: Computable invariant with known expected value (e.g.
dimension) is wrong (have to do expensive test for each prime,
although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute invariant for each modular result and
store modular results)

Type 5: otherwise.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 33 / 76

Bad primes

Classification of bad primes:

Type 1: Input modulo p not valid (no problem)

Type 2: Failure in the course of the algorithm (e.g. matrix not
invertible modulo p, wastes computation time if happens)

Type 3: Computable invariant with known expected value (e.g.
dimension) is wrong (have to do expensive test for each prime,
although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute invariant for each modular result and
store modular results)

Type 5: otherwise.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 33 / 76

Bad primes

Classification of bad primes:

Type 1: Input modulo p not valid (no problem)

Type 2: Failure in the course of the algorithm (e.g. matrix not
invertible modulo p, wastes computation time if happens)

Type 3: Computable invariant with known expected value (e.g.
dimension) is wrong (have to do expensive test for each prime,
although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute invariant for each modular result and
store modular results)

Type 5: otherwise.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 33 / 76

Bad primes

Classification of bad primes:

Type 1: Input modulo p not valid (no problem)

Type 2: Failure in the course of the algorithm (e.g. matrix not
invertible modulo p, wastes computation time if happens)

Type 3: Computable invariant with known expected value (e.g.
dimension) is wrong (have to do expensive test for each prime,
although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute invariant for each modular result and
store modular results)

Type 5: otherwise.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 33 / 76

Bad primes

Classification of bad primes:

Type 1: Input modulo p not valid (no problem)

Type 2: Failure in the course of the algorithm (e.g. matrix not
invertible modulo p, wastes computation time if happens)

Type 3: Computable invariant with known expected value (e.g.
dimension) is wrong (have to do expensive test for each prime,
although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute invariant for each modular result and
store modular results)

Type 5: otherwise.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 33 / 76

Example of type 5 bad prime

For ideal I ⊂ Q[X] and prime p define Ip = (I ∩Z[X])p.

Example

Consider the algorithm I 7→
√

I + Jac(I) for

I =
〈
x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6

〉

Then w.r.t dp LM(I) =
〈
x6
〉
= LM(I5)

U(0) =
√

I + Jac(I) = 〈y , x − 4z〉 ∩ 〈y , x + 6z〉

U(5) =
√

I5 + Jac(I5) =
〈
y , x2 − z2

〉
= 〈y , x − z〉 ∩ 〈y , x + z〉

U(0)5 =
〈
y , (x + z)2

〉
Hence

U(0)5 6= U(5)

LM(U(0)) =
〈
y , x2

〉
= LM(U(5))

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 34 / 76

Example of type 5 bad prime

For ideal I ⊂ Q[X] and prime p define Ip = (I ∩Z[X])p.

Example

Consider the algorithm I 7→
√

I + Jac(I) for

I =
〈
x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6

〉
Then w.r.t dp LM(I) =

〈
x6
〉
= LM(I5)

U(0) =
√

I + Jac(I) = 〈y , x − 4z〉 ∩ 〈y , x + 6z〉

U(5) =
√

I5 + Jac(I5) =
〈
y , x2 − z2

〉
= 〈y , x − z〉 ∩ 〈y , x + z〉

U(0)5 =
〈
y , (x + z)2

〉
Hence

U(0)5 6= U(5)

LM(U(0)) =
〈
y , x2

〉
= LM(U(5))

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 34 / 76

Example of type 5 bad prime

For ideal I ⊂ Q[X] and prime p define Ip = (I ∩Z[X])p.

Example

Consider the algorithm I 7→
√

I + Jac(I) for

I =
〈
x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6

〉
Then w.r.t dp LM(I) =

〈
x6
〉
= LM(I5)

U(0) =
√

I + Jac(I) = 〈y , x − 4z〉 ∩ 〈y , x + 6z〉

U(5) =
√

I5 + Jac(I5) =
〈
y , x2 − z2

〉
= 〈y , x − z〉 ∩ 〈y , x + z〉

U(0)5 =
〈
y , (x + z)2

〉
Hence

U(0)5 6= U(5)

LM(U(0)) =
〈
y , x2

〉
= LM(U(5))

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 34 / 76

Example of type 5 bad prime

For ideal I ⊂ Q[X] and prime p define Ip = (I ∩Z[X])p.

Example

Consider the algorithm I 7→
√

I + Jac(I) for

I =
〈
x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6

〉
Then w.r.t dp LM(I) =

〈
x6
〉
= LM(I5)

U(0) =
√

I + Jac(I) = 〈y , x − 4z〉 ∩ 〈y , x + 6z〉

U(5) =
√

I5 + Jac(I5) =
〈
y , x2 − z2

〉
= 〈y , x − z〉 ∩ 〈y , x + z〉

U(0)5 =
〈
y , (x + z)2

〉

Hence
U(0)5 6= U(5)

LM(U(0)) =
〈
y , x2

〉
= LM(U(5))

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 34 / 76

Example of type 5 bad prime

For ideal I ⊂ Q[X] and prime p define Ip = (I ∩Z[X])p.

Example

Consider the algorithm I 7→
√

I + Jac(I) for

I =
〈
x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6

〉
Then w.r.t dp LM(I) =

〈
x6
〉
= LM(I5)

U(0) =
√

I + Jac(I) = 〈y , x − 4z〉 ∩ 〈y , x + 6z〉

U(5) =
√

I5 + Jac(I5) =
〈
y , x2 − z2

〉
= 〈y , x − z〉 ∩ 〈y , x + z〉

U(0)5 =
〈
y , (x + z)2

〉
Hence

U(0)5 6= U(5)

LM(U(0)) =
〈
y , x2

〉
= LM(U(5))

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 34 / 76

Error tolerant reconstruction

Goal: Reconstruct a
b from r ∈ Z/N in the presence of bad primes.

Algorithm: Find (x , y) with x
y = a

b in the lattice

Λ = 〈(N, 0), (r , 1)〉 ⊂ Z2

Lemma (BDFP, 2015)

All (x , y) ∈ Λ with x2 + y2 < N are collinear.

Proof.

Let λ = (x , y), µ = (c, d) ∈ Λ with x2 + y2, c2 + d2 < N. Then
yµ− dλ = (yc − xd , 0) ∈ Λ, so N |(yc − xd). By Cauchy–Schwarz
|yc − xd | < N, hence yc = xd .

Now suppose
N = N ′ ·M

with gcd(N ′,M) = 1.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 35 / 76

Error tolerant reconstruction

Goal: Reconstruct a
b from r ∈ Z/N in the presence of bad primes.

Algorithm: Find (x , y) with x
y = a

b in the lattice

Λ = 〈(N, 0), (r , 1)〉 ⊂ Z2

Lemma (BDFP, 2015)

All (x , y) ∈ Λ with x2 + y2 < N are collinear.

Proof.

Let λ = (x , y), µ = (c, d) ∈ Λ with x2 + y2, c2 + d2 < N. Then
yµ− dλ = (yc − xd , 0) ∈ Λ, so N |(yc − xd). By Cauchy–Schwarz
|yc − xd | < N, hence yc = xd .

Now suppose
N = N ′ ·M

with gcd(N ′,M) = 1.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 35 / 76

Error tolerant reconstruction

Goal: Reconstruct a
b from r ∈ Z/N in the presence of bad primes.

Algorithm: Find (x , y) with x
y = a

b in the lattice

Λ = 〈(N, 0), (r , 1)〉 ⊂ Z2

Lemma (BDFP, 2015)

All (x , y) ∈ Λ with x2 + y2 < N are collinear.

Proof.

Let λ = (x , y), µ = (c, d) ∈ Λ with x2 + y2, c2 + d2 < N. Then
yµ− dλ = (yc − xd , 0) ∈ Λ, so N |(yc − xd). By Cauchy–Schwarz
|yc − xd | < N, hence yc = xd .

Now suppose
N = N ′ ·M

with gcd(N ′,M) = 1.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 35 / 76

Error tolerant reconstruction

Goal: Reconstruct a
b from r ∈ Z/N in the presence of bad primes.

Algorithm: Find (x , y) with x
y = a

b in the lattice

Λ = 〈(N, 0), (r , 1)〉 ⊂ Z2

Lemma (BDFP, 2015)

All (x , y) ∈ Λ with x2 + y2 < N are collinear.

Proof.

Let λ = (x , y), µ = (c, d) ∈ Λ with x2 + y2, c2 + d2 < N. Then
yµ− dλ = (yc − xd , 0) ∈ Λ, so N |(yc − xd). By Cauchy–Schwarz
|yc − xd | < N, hence yc = xd .

Now suppose
N = N ′ ·M

with gcd(N ′,M) = 1.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 35 / 76

Error tolerant reconstruction

Goal: Reconstruct a
b from r ∈ Z/N in the presence of bad primes.

Algorithm: Find (x , y) with x
y = a

b in the lattice

Λ = 〈(N, 0), (r , 1)〉 ⊂ Z2

Lemma (BDFP, 2015)

All (x , y) ∈ Λ with x2 + y2 < N are collinear.

Proof.

Let λ = (x , y), µ = (c, d) ∈ Λ with x2 + y2, c2 + d2 < N. Then
yµ− dλ = (yc − xd , 0) ∈ Λ, so N |(yc − xd). By Cauchy–Schwarz
|yc − xd | < N, hence yc = xd .

Now suppose
N = N ′ ·M

with gcd(N ′,M) = 1.
Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 35 / 76

Error tolerant reconstruction

Think of N ′ as the product of the good primes with correct result s,
and of M as the product of the bad primes with wrong result t.

Theorem (BDFP, 2015)

If
r 7→ (s, t) with respect to Z/N ∼= Z/N ′ ×Z/M

and a

b
≡ s modN ′

then (aM, bM) ∈ Λ. So if

(a2 + b2)M < N ′,

then (by the lemma)

x

y
=

a

b
for all (x , y) ∈ Λ with (x2 + y2) < N

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x , y) is a shortest
vector 6= 0 in Λ, we also have gcd(x , y)|M.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 36 / 76

Error tolerant reconstruction

Think of N ′ as the product of the good primes with correct result s,
and of M as the product of the bad primes with wrong result t.

Theorem (BDFP, 2015)

If
r 7→ (s, t) with respect to Z/N ∼= Z/N ′ ×Z/M

and a

b
≡ s modN ′

then (aM, bM) ∈ Λ. So if

(a2 + b2)M < N ′,

then (by the lemma)

x

y
=

a

b
for all (x , y) ∈ Λ with (x2 + y2) < N

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x , y) is a shortest
vector 6= 0 in Λ, we also have gcd(x , y)|M.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 36 / 76

Error tolerant reconstruction

Think of N ′ as the product of the good primes with correct result s,
and of M as the product of the bad primes with wrong result t.

Theorem (BDFP, 2015)

If
r 7→ (s, t) with respect to Z/N ∼= Z/N ′ ×Z/M

and a

b
≡ s modN ′

then (aM, bM) ∈ Λ.

So if

(a2 + b2)M < N ′,

then (by the lemma)

x

y
=

a

b
for all (x , y) ∈ Λ with (x2 + y2) < N

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x , y) is a shortest
vector 6= 0 in Λ, we also have gcd(x , y)|M.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 36 / 76

Error tolerant reconstruction

Think of N ′ as the product of the good primes with correct result s,
and of M as the product of the bad primes with wrong result t.

Theorem (BDFP, 2015)

If
r 7→ (s, t) with respect to Z/N ∼= Z/N ′ ×Z/M

and a

b
≡ s modN ′

then (aM, bM) ∈ Λ. So if

(a2 + b2)M < N ′,

then (by the lemma)

x

y
=

a

b
for all (x , y) ∈ Λ with (x2 + y2) < N

and such vectors exist.

Moreover, if gcd(a, b) = 1 and (x , y) is a shortest
vector 6= 0 in Λ, we also have gcd(x , y)|M.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 36 / 76

Error tolerant reconstruction

Think of N ′ as the product of the good primes with correct result s,
and of M as the product of the bad primes with wrong result t.

Theorem (BDFP, 2015)

If
r 7→ (s, t) with respect to Z/N ∼= Z/N ′ ×Z/M

and a

b
≡ s modN ′

then (aM, bM) ∈ Λ. So if

(a2 + b2)M < N ′,

then (by the lemma)

x

y
=

a

b
for all (x , y) ∈ Λ with (x2 + y2) < N

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x , y) is a shortest
vector 6= 0 in Λ, we also have gcd(x , y)|M.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 36 / 76

Error tolerant reconstruction via Gauss-Lagrange

Hence, if N ′ � M, the Gauss-Lagrange-Algorithm for finding a shortest
vector (x , y) ∈ Λ gives a

b independently of t, provided x2 + y2 < N.

Algorithm (Error tolerant reconstruction)

function ErrorTolerantReconstruction(r::Integer, N::Integer)

a1 = [N, 0]

a2 = [r, 1]

while dot(a1, a1) > dot(a2, a2)

q = dot(a1, a2)//dot(a2, a2)

a1, a2 = a2, a1 - Integer(round(q))*a2

end

if dot(a1, a1) < N

return a1[1]//a1[2]

else

return false

end

end

Singular-kernel Julia Singular-interpreter

0.001 0.005 0.055
(in seconds, bitlength 500)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 37 / 76

Error tolerant reconstruction via Gauss-Lagrange

Hence, if N ′ � M, the Gauss-Lagrange-Algorithm for finding a shortest
vector (x , y) ∈ Λ gives a

b independently of t, provided x2 + y2 < N.

Algorithm (Error tolerant reconstruction)

function ErrorTolerantReconstruction(r::Integer, N::Integer)

a1 = [N, 0]

a2 = [r, 1]

while dot(a1, a1) > dot(a2, a2)

q = dot(a1, a2)//dot(a2, a2)

a1, a2 = a2, a1 - Integer(round(q))*a2

end

if dot(a1, a1) < N

return a1[1]//a1[2]

else

return false

end

end

Singular-kernel Julia Singular-interpreter

0.001 0.005 0.055
(in seconds, bitlength 500)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 37 / 76

Error tolerant reconstruction via Gauss-Lagrange

Hence, if N ′ � M, the Gauss-Lagrange-Algorithm for finding a shortest
vector (x , y) ∈ Λ gives a

b independently of t, provided x2 + y2 < N.

Algorithm (Error tolerant reconstruction)

function ErrorTolerantReconstruction(r::Integer, N::Integer)

a1 = [N, 0]

a2 = [r, 1]

while dot(a1, a1) > dot(a2, a2)

q = dot(a1, a2)//dot(a2, a2)

a1, a2 = a2, a1 - Integer(round(q))*a2

end

if dot(a1, a1) < N

return a1[1]//a1[2]

else

return false

end

end

Singular-kernel Julia Singular-interpreter

0.001 0.005 0.055
(in seconds, bitlength 500)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 37 / 76

Reconstruction via Gauss-Lagrange

Example

We reconstruct 13
12 from

22684 ∈ Z/38885

by determining a shortest vector in the lattice

〈(38885, 0), (22684, 1)〉 ⊂ Z2

via Gauss-Lagrange

(38885, 0) = 2 · (22684, 1) + (−6483,−2),

(22684, 1) = −3 · (−6483,−2) + (3235,−5),

(−6483,−2) = 2 · (3235,−5) + (−13,−12),

(3235,−5) = −134 · (−13,−12) + (1493,−1613).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 38 / 76

Reconstruction via Gauss-Lagrange

Example

We reconstruct 13
12 from

22684 ∈ Z/38885

by determining a shortest vector in the lattice

〈(38885, 0), (22684, 1)〉 ⊂ Z2

via Gauss-Lagrange

(38885, 0) = 2 · (22684, 1) + (−6483,−2),

(22684, 1) = −3 · (−6483,−2) + (3235,−5),

(−6483,−2) = 2 · (3235,−5) + (−13,−12),

(3235,−5) = −134 · (−13,−12) + (1493,−1613).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 38 / 76

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

(4 , 4 , 2 , 60) 7→ 22684

(4 , 2 , 2 60) 7→ 464

Error tolerant reconstruction computes

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251)

hence yields
91

84
=

7 · 13

7 · 12
=

13

12
.

Note that
(132 + 122) · 7 = 2191 < 5555 = 5 · 11 · 101.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 39 / 76

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

(4 , 4 , 2 , 60) 7→ 22684

(4 , 2 , 2 60) 7→ 464

Error tolerant reconstruction computes

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251)

hence yields
91

84
=

7 · 13

7 · 12
=

13

12
.

Note that
(132 + 122) · 7 = 2191 < 5555 = 5 · 11 · 101.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 39 / 76

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

(4 , 4 , 2 , 60) 7→ 22684

(4 , 2 , 2 60) 7→ 464

Error tolerant reconstruction computes

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251)

hence yields
91

84
=

7 · 13

7 · 12
=

13

12
.

Note that
(132 + 122) · 7 = 2191 < 5555 = 5 · 11 · 101.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 39 / 76

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

(4 , 4 , 2 , 60) 7→ 22684

(4 , 2 , 2 60) 7→ 464

Error tolerant reconstruction computes

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251)

hence yields
91

84
=

7 · 13

7 · 12
=

13

12
.

Note that
(132 + 122) · 7 = 2191 < 5555 = 5 · 11 · 101.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 39 / 76

Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

(4 , 4 , 2 , 60) 7→ 22684

(4 , 2 , 2 60) 7→ 464

Error tolerant reconstruction computes

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251)

hence yields
91

84
=

7 · 13

7 · 12
=

13

12
.

Note that
(132 + 122) · 7 = 2191 < 5555 = 5 · 11 · 101.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 39 / 76

General reconstruction scheme

Setup: For ideal I ⊂ Q[X] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 40 / 76

General reconstruction scheme

Setup: For ideal I ⊂ Q[X] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 40 / 76

General reconstruction scheme

Setup: For ideal I ⊂ Q[X] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 40 / 76

General reconstruction scheme

Setup: For ideal I ⊂ Q[X] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 40 / 76

General reconstruction scheme

Setup: For ideal I ⊂ Q[X] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 40 / 76

General reconstruction scheme

Setup: For ideal I ⊂ Q[X] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 40 / 76

General reconstruction scheme

Setup: For ideal I ⊂ Q[X] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 40 / 76

General reconstruction scheme

Setup: For ideal I ⊂ Q[X] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 40 / 76

Timings in Singular for Adjoint Ideal

Plane curve fn of degree n with (n−12) singularities of type A1.

p
ar

al
le

l

pr
ob

ab
lis

it
ic

f5 f6 f7

locNormal 2.1 56 -
Maple-IB 5.1 47 318

LA 98 4400 -
IQ 1.3 54 3800
locIQ � 1.3 (1) 54 (1) 3800 (1)
ADE � .18 (1) 1.2 (1) 49 (1)

modLocIQ 6.4 [33] 19 [53] 150 [75]
� 6.2 [33] 18 [53] 104 [75]

� .36 (74) 1.6 (153) 51 (230)
� � .21 (74) 0.48 (153) 5.2 (230)

[primes] (cores)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 41 / 76

Timings in Singular for Adjoint Ideal

Plane curve fn of degree n with (n−12) singularities of type A1.

p
ar

al
le

l

pr
ob

ab
lis

it
ic

f5 f6 f7

locNormal 2.1 56 -
Maple-IB 5.1 47 318

LA 98 4400 -
IQ 1.3 54 3800
locIQ � 1.3 (1) 54 (1) 3800 (1)
ADE � .18 (1) 1.2 (1) 49 (1)

modLocIQ 6.4 [33] 19 [53] 150 [75]
� 6.2 [33] 18 [53] 104 [75]

� .36 (74) 1.6 (153) 51 (230)
� � .21 (74) 0.48 (153) 5.2 (230)

[primes] (cores)
Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 41 / 76

References

J. Boehm, W. Decker, C. Fieker, G. Pfister. The use of bad primes in
rational reconstruction, Math. Comp. 84 (2015).

J. Boehm, W. Decker, S. Laplagne, G. Pfister, A. Steenpaß, S. Steidel.
Parallel algorithms for normalization, J. Symb. Comp. 51 (2013).

J. Boehm, W. Decker, G. Pfister, S. Laplagne. Local to global algo-
rithms for the Gorenstein adjoint ideal of a curve, arXiv:1505.05040.

P. Kornerup, R. T. Gregory, Mapping integers and Hensel codes onto
Farey fractions, BIT 23 (1983).

E. Arnold, Modular algorithms for computing Gröbner bases, J. Symb.
Comp. 35 (2003).

G.-M. Greuel, S. Laplagne, S. Seelisch, Normalization of rings, J.
Symb. Comp. (2010).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 41 / 76

http://arxiv.org/abs/1505.05040

Singular and GPI-Space

Features of GPI-Space developed by Fraunhofer Institute for Industrial
Mathematics ITWM, Kaiserslautern:

Distributed run-time system suitable for massively parallel
computations.

Virtual memory layer.

Modeling with Petri nets.
Auto-parallelization engine.

Proof of concept integration of Singular in GPI-Space.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

Singular and GPI-Space

Features of GPI-Space developed by Fraunhofer Institute for Industrial
Mathematics ITWM, Kaiserslautern:

Distributed run-time system suitable for massively parallel
computations.

Virtual memory layer.

Modeling with Petri nets.
Auto-parallelization engine.

Proof of concept integration of Singular in GPI-Space.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

Singular and GPI-Space

Features of GPI-Space developed by Fraunhofer Institute for Industrial
Mathematics ITWM, Kaiserslautern:

Distributed run-time system suitable for massively parallel
computations.

Virtual memory layer.

Modeling with Petri nets.
Auto-parallelization engine.

Proof of concept integration of Singular in GPI-Space.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

GPI-Space: A Petri net

Clock at time t = 4:

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

GPI-Space: A Petri net

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

Singular and GPI-Space

Features of GPI-Space developed by Fraunhofer Institute for Industrial
Mathematics ITWM, Kaiserslautern:

Distributed run-time system suitable for massively parallel
computations.

Virtual memory layer.

Modeling with Petri nets.

Auto-parallelization engine.

Proof of concept integration of Singular in GPI-Space.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

Singular and GPI-Space

Features of GPI-Space developed by Fraunhofer Institute for Industrial
Mathematics ITWM, Kaiserslautern:

Distributed run-time system suitable for massively parallel
computations.

Virtual memory layer.

Modeling with Petri nets.

Auto-parallelization engine.

Proof of concept integration of Singular in GPI-Space.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

GPI-Space: Scheduler

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

Singular and GPI-Space

Features of GPI-Space developed by Fraunhofer Institute for Industrial
Mathematics ITWM, Kaiserslautern:

Distributed run-time system suitable for massively parallel
computations.

Virtual memory layer.

Modeling with Petri nets.

Auto-parallelization engine.

Integration of Singular in GPI-Space.
Cluster at ITWM with ≈ 104 nodes.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

Singular and GPI-Space

Features of GPI-Space developed by Fraunhofer Institute for Industrial
Mathematics ITWM, Kaiserslautern:

Distributed run-time system suitable for massively parallel
computations.

Virtual memory layer.

Modeling with Petri nets.

Auto-parallelization engine.

Integration of Singular in GPI-Space.
Cluster at ITWM with ≈ 104 nodes.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 42 / 76

Singular and GPI-Space

Example

Algorithm for determining smoothness by local descent in codimension
relative to a smooth complete intersection (as in Hironaka’s resolution of
singularities). Descent to any desired size of minors in Jacobian criterion.

Boehm, J., Frühbis-Krüger: A smoothness test for higher
codimensions. arXiv:1603.09241 JSC (to appear).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 43 / 76

arxiv.org/abs/1603.09241

Singular and GPI-Space

Example

Algorithm for determining smoothness by local descent in codimension
relative to a smooth complete intersection (as in Hironaka’s resolution of
singularities). Descent to any desired size of minors in Jacobian criterion.

Boehm, J., Frühbis-Krüger: A smoothness test for higher
codimensions. arXiv:1603.09241 JSC (to appear).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 43 / 76

arxiv.org/abs/1603.09241

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of a reductive group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G :

C∗ ×C → C, t · x = tx

Instead, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions on X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 44 / 76

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of a reductive group G a reasonable
quotient space X//G . Two main problems:

1 The orbit space X/G is not a good candidate for X//G :

C∗ ×C → C, t · x = tx

Instead, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions on X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 44 / 76

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of a reductive group G a reasonable
quotient space X//G . Two main problems:

1 The orbit space X/G is not a good candidate for X//G :

C∗ ×C → C, t · x = tx

Instead, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions on X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 44 / 76

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of a reductive group G a reasonable
quotient space X//G . Two main problems:

1 The orbit space X/G is not a good candidate for X//G :

C∗ ×C → C, t · x = tx

Instead, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions on X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 44 / 76

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of a reductive group G a reasonable
quotient space X//G . Two main problems:

1 The orbit space X/G is not a good candidate for X//G :

C∗ ×C → C, t · x = tx

Instead, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions on X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 44 / 76

Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of a reductive group G a reasonable
quotient space X//G . Two main problems:

1 The orbit space X/G is not a good candidate for X//G :

C∗ ×C → C, t · x = tx

Instead, for X affine define

X//G = SpecK [X]G

as the spectrum of the (finitely generated) invariant ring of the
functions on X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 44 / 76

Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 45 / 76

Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 45 / 76

Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 45 / 76

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients.

We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U1 = C2

U2 = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 46 / 76

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients. We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U1 = C2

U2 = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 46 / 76

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients. We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U1 = C2

U2 = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 46 / 76

GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients. We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr] defining X ,

matrix Q = (q1, . . . , qr) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti) = qi ∈ Zk .

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U1 = C2

U2 = C2\{0} Λ(〈0〉 , (1, 1)) =

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 46 / 76

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits corresponding to faces γ ≺ Qr

≥0:

Cr =
⋃

γ
O(γ)

O(γ) = (C∗)r ·∑ei∈γ
ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

3
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

The orbit cones are the Q(γ) = cone(qi | ei ∈ γ) with γ an a-face.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 47 / 76

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.

Decomposition into torus orbits corresponding to faces γ ≺ Qr
≥0:

Cr =
⋃

γ
O(γ)

O(γ) = (C∗)r ·∑ei∈γ
ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

3
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

The orbit cones are the Q(γ) = cone(qi | ei ∈ γ) with γ an a-face.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 47 / 76

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits corresponding to faces γ ≺ Qr

≥0:

Cr =
⋃

γ
O(γ)

O(γ) = (C∗)r ·∑ei∈γ
ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

3
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

The orbit cones are the Q(γ) = cone(qi | ei ∈ γ) with γ an a-face.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 47 / 76

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits corresponding to faces γ ≺ Qr

≥0:

Cr =
⋃

γ
O(γ)

O(γ) = (C∗)r ·∑ei∈γ
ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

3
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

The orbit cones are the Q(γ) = cone(qi | ei ∈ γ) with γ an a-face.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 47 / 76

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits corresponding to faces γ ≺ Qr

≥0:

Cr =
⋃

γ
O(γ)

O(γ) = (C∗)r ·∑ei∈γ
ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅

2 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

3
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

The orbit cones are the Q(γ) = cone(qi | ei ∈ γ) with γ an a-face.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 47 / 76

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits corresponding to faces γ ≺ Qr

≥0:

Cr =
⋃

γ
O(γ)

O(γ) = (C∗)r ·∑ei∈γ
ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

3
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

The orbit cones are the Q(γ) = cone(qi | ei ∈ γ) with γ an a-face.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 47 / 76

Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits corresponding to faces γ ≺ Qr

≥0:

Cr =
⋃

γ
O(γ)

O(γ) = (C∗)r ·∑ei∈γ
ei = {(z1, . . . , zr) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

3
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

The orbit cones are the Q(γ) = cone(qi | ei ∈ γ) with γ an a-face.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 47 / 76

Computing GIT-Fans

1 Determine a-faces.

2 Compute set of orbit cones

Ω = {Q(γ) | γ an a-face}

where

Q(γ) = cone(qi | ei ∈ γ) ⊂ Γ = Q(Qr
≥0) = cone(q1, . . . , qr) ⊂ Qk

is projection of γ with respect to Q.

3 Determine GIT-fan:

Λ(a,Q) = {λΩ(w) | w ∈ Γ} where λΩ(w) =
⋂

w∈η∈Ω

η

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 48 / 76

Computing GIT-Fans

1 Determine a-faces.

2 Compute set of orbit cones

Ω = {Q(γ) | γ an a-face}

where

Q(γ) = cone(qi | ei ∈ γ) ⊂ Γ = Q(Qr
≥0) = cone(q1, . . . , qr) ⊂ Qk

is projection of γ with respect to Q.

3 Determine GIT-fan:

Λ(a,Q) = {λΩ(w) | w ∈ Γ} where λΩ(w) =
⋂

w∈η∈Ω

η

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 48 / 76

Computing GIT-Fans

1 Determine a-faces.

2 Compute set of orbit cones

Ω = {Q(γ) | γ an a-face}

where

Q(γ) = cone(qi | ei ∈ γ) ⊂ Γ = Q(Qr
≥0) = cone(q1, . . . , qr) ⊂ Qk

is projection of γ with respect to Q.

3 Determine GIT-fan:

Λ(a,Q) = {λΩ(w) | w ∈ Γ} where λΩ(w) =
⋂

w∈η∈Ω

η

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 48 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}

3: Choose a vector w0 ∈ Q(Qr
≥0) such that dim(λΩ(w0)) = k.

4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.

4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}

5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.

6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.

8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}

9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}
10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 49 / 76

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 50 / 76

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 50 / 76

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 50 / 76

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞,

replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 50 / 76

Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 50 / 76

Timings

Saturation in product of variables for ideal a with 225 generators in 40
variables with variables not in J equal to 0:

{1, . . . , 40}\J 40− |J | a-face divgbsat gbsat sat rabinowitsch

{3, 4, 5, 7, . . . , 15} 28 no 1 761 517 342
{9, 11, 12, 13, 15} 35 no 1 57200 ∗ ∗
{11, 12, 13, 15} 36 no 1 44100 ∗ ∗
{9, 11, 14, 15} 36 yes 64 121000 ∗ ∗
{9, 11, 15} 37 yes 1170 114000 ∗ ∗
{9, 11, 13} 37 no 1 31400 ∗ ∗

(in seconds, * did not finish in > 2 days)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 51 / 76

Timings

Saturation in product of variables for ideal a with 225 generators in 40
variables with variables not in J equal to 0:

{1, . . . , 40}\J 40− |J | a-face divgbsat gbsat sat rabinowitsch

{3, 4, 5, 7, . . . , 15} 28 no 1 761 517 342
{9, 11, 12, 13, 15} 35 no 1 57200 ∗ ∗
{11, 12, 13, 15} 36 no 1 44100 ∗ ∗
{9, 11, 14, 15} 36 yes 64 121000 ∗ ∗
{9, 11, 15} 37 yes 1170 114000 ∗ ∗
{9, 11, 13} 37 no 1 31400 ∗ ∗

(in seconds, * did not finish in > 2 days)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 51 / 76

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of (C∗)k on X is a subgroup G ⊂ Sr of
the symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 52 / 76

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of (C∗)k on X is a subgroup G ⊂ Sr of
the symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 52 / 76

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of (C∗)k on X is a subgroup G ⊂ Sr of
the symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr

such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 52 / 76

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of (C∗)k on X is a subgroup G ⊂ Sr of
the symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 52 / 76

Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of (C∗)k on X is a subgroup G ⊂ Sr of
the symmetric group such that there are group actions

G × K[T1, . . . ,Tr] → K[T1, . . . ,Tr], (σ,Tj) 7→ σ(Tj) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej) 7→ σ(ej) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 52 / 76

Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{

1 λ ⊂ ϑ

0 λ 6⊂ ϑ



G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]
such that

g · hΩ(λ) = hΩ(g · λ).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 53 / 76

Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{

1 λ ⊂ ϑ

0 λ 6⊂ ϑ



G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]
such that

g · hΩ(λ) = hΩ(g · λ).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 53 / 76

Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{

1 λ ⊂ ϑ

0 λ 6⊂ ϑ



G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]

such that
g · hΩ(λ) = hΩ(g · λ).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 53 / 76

Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{

1 λ ⊂ ϑ

0 λ 6⊂ ϑ



G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]
such that

g · hΩ(λ) = hΩ(g · λ).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 53 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}

3: Ω :=
⋃

γ∈A G ·Q(γ)
4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)

5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.

6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}

7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}

8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.

10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}

12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}

13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}

15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76

An Example with D4-Symmetry

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj) = qj

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

A(1,2)(3,4) =

(
−1 0
0 1

)
A(1,2,3,4) =

(
0 −1
1 0

)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 55 / 76

An Example with D4-Symmetry

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj) = qj

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

A(1,2)(3,4) =

(
−1 0
0 1

)
A(1,2,3,4) =

(
0 −1
1 0

)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 55 / 76

An Example with D4-Symmetry

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj) = qj

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

A(1,2)(3,4) =

(
−1 0
0 1

)
A(1,2,3,4) =

(
0 −1
1 0

)
Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 55 / 76

Example with D4-symmetry

Example

γ |G · γ| a|Ti=0 for ei /∈γ a-face

γ0 = cone(0) 1 0 true

γ1 = cone(e1) 4 0 true

γ2 = cone(e1, e2) 4 0 true

γ′2 = cone(e1, e3) 2 〈T1T3〉 false

γ3 = cone(e1, e2, e3) 4 〈T1T3〉 false

γ4 = cone(e1, e2, e3, e4) 1 〈T1T3 − T2T4〉 true

Q(γ0) = cone(0), Q(γ1) = cone
[

1
1

]
, Q(γ2) = cone

([
1
1

]
,

[
−1
1

])
, Q(γ4) = Q2

w0 =

(
0
1

)
(0, 0)

q1q2

q3 q4

λ(w0)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 56 / 76

Example with D4-symmetry

Example

γ |G · γ| a|Ti=0 for ei /∈γ a-face

γ0 = cone(0) 1 0 true

γ1 = cone(e1) 4 0 true

γ2 = cone(e1, e2) 4 0 true

γ′2 = cone(e1, e3) 2 〈T1T3〉 false

γ3 = cone(e1, e2, e3) 4 〈T1T3〉 false

γ4 = cone(e1, e2, e3, e4) 1 〈T1T3 − T2T4〉 true

Q(γ0) = cone(0), Q(γ1) = cone
[

1
1

]
, Q(γ2) = cone

([
1
1

]
,

[
−1
1

])
, Q(γ4) = Q2

w0 =

(
0
1

)
(0, 0)

q1q2

q3 q4

λ(w0)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 56 / 76

Example with D4-symmetry

Example

γ |G · γ| a|Ti=0 for ei /∈γ a-face

γ0 = cone(0) 1 0 true

γ1 = cone(e1) 4 0 true

γ2 = cone(e1, e2) 4 0 true

γ′2 = cone(e1, e3) 2 〈T1T3〉 false

γ3 = cone(e1, e2, e3) 4 〈T1T3〉 false

γ4 = cone(e1, e2, e3, e4) 1 〈T1T3 − T2T4〉 true

Q(γ0) = cone(0), Q(γ1) = cone
[

1
1

]
, Q(γ2) = cone

([
1
1

]
,

[
−1
1

])
, Q(γ4) = Q2

w0 =

(
0
1

)
(0, 0)

q1q2

q3 q4

λ(w0)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 56 / 76

Mori Dream Spaces

A projective variety X over C is called a Mori dream space if its Cox ring
R(X) = ∑[D]∈Cl(X) H

0(X ,OX (D)) is finitely generated.

Example

Fano varieties.

Projective toric varieties (⇔ R(X) polynomial ring).

Like toric varieties, admit construction as GIT-quotient (Hu, Keel, 2000):

X = X̂//G
where

X̂ ⊂ X := SpecR(X) open invariant
G := Spec C[Cl(X)]

Remark

The GIT-fan yields the Mori chamber decomposition, which describes all
birational modifications (analogous to the GKZ-fan of a toric varietiy).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 57 / 76

Mori Dream Spaces

A projective variety X over C is called a Mori dream space if its Cox ring
R(X) = ∑[D]∈Cl(X) H

0(X ,OX (D)) is finitely generated.

Example

Fano varieties.

Projective toric varieties (⇔ R(X) polynomial ring).

Like toric varieties, admit construction as GIT-quotient (Hu, Keel, 2000):

X = X̂//G
where

X̂ ⊂ X := SpecR(X) open invariant
G := Spec C[Cl(X)]

Remark

The GIT-fan yields the Mori chamber decomposition, which describes all
birational modifications (analogous to the GKZ-fan of a toric varietiy).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 57 / 76

Moduli Spaces of Stable Maps

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

M0,n for n ≤ 6 is a Mori dream space:

Castravet, 2009, for n = 6.

M0,n for n ≥ 10 is not a Mori dream space:

Castravet, Tevelev, 2013, for n ≥ 134.

Gonzáles, Karu, 2016, for n ≥ 13.

Hausen, Keicher, Laface, 2016, for n ≥ 10.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 58 / 76

Moduli Spaces of Stable Maps

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

M0,n for n ≤ 6 is a Mori dream space:

Castravet, 2009, for n = 6.

M0,n for n ≥ 10 is not a Mori dream space:

Castravet, Tevelev, 2013, for n ≥ 134.

Gonzáles, Karu, 2016, for n ≥ 13.

Hausen, Keicher, Laface, 2016, for n ≥ 10.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 58 / 76

Moduli Spaces of Stable Maps

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

M0,n for n ≤ 6 is a Mori dream space:

Castravet, 2009, for n = 6.

M0,n for n ≥ 10 is not a Mori dream space:

Castravet, Tevelev, 2013, for n ≥ 134.

Gonzáles, Karu, 2016, for n ≥ 13.

Hausen, Keicher, Laface, 2016, for n ≥ 10.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 58 / 76

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5).

Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 59 / 76

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 59 / 76

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 59 / 76

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 59 / 76

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 59 / 76

Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5). Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 59 / 76

Example: GIT-fan for G(2, 5)

Adjacency graph of the maximal-dimensional GIT-cones and their orbits:

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 60 / 76

Mori Chamber Decomposition of Mov(M0,6)
The moving cone Mov(M0,6) classifies all small modifications (rational
maps which are isomorphisms on open subsets which have a complement
of codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009),

and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

The cone with orbit length one is the semiample cone (dual of Mori cone).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 61 / 76

Mori Chamber Decomposition of Mov(M0,6)
The moving cone Mov(M0,6) classifies all small modifications (rational
maps which are isomorphisms on open subsets which have a complement
of codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009), and 225
relations (Bernal Guillen, 2012),

and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

The cone with orbit length one is the semiample cone (dual of Mori cone).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 61 / 76

Mori Chamber Decomposition of Mov(M0,6)
The moving cone Mov(M0,6) classifies all small modifications (rational
maps which are isomorphisms on open subsets which have a complement
of codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009), and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.

The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

The cone with orbit length one is the semiample cone (dual of Mori cone).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 61 / 76

Mori Chamber Decomposition of Mov(M0,6)
The moving cone Mov(M0,6) classifies all small modifications (rational
maps which are isomorphisms on open subsets which have a complement
of codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009), and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

The cone with orbit length one is the semiample cone (dual of Mori cone).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 61 / 76

Mori Chamber Decomposition of Mov(M0,6)
The moving cone Mov(M0,6) classifies all small modifications (rational
maps which are isomorphisms on open subsets which have a complement
of codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009), and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

The cone with orbit length one is the semiample cone (dual of Mori cone).
Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 61 / 76

References

J. Boehm, S. Keicher, Y. Ren. Computing GIT-fans with symmetry
and the Mori chamber decomposition of M0,6, arXiv:1603.09241
(2016).

S. Keicher. Computing the GIT-fan, Int. J. Algebra Comput. (2012).

D. Mumford, J. Fogarty, F. Kirwan. Geometric invariant theory.
Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer (1994).

I. V. Dolgachev and Y. Hu. Variation of geometric invariant theory
quotients. Publ. Math., Inst. Hautes Etud. Sci. (1998).

F. Berchtold, J. Hausen. GIT equivalence beyond the ample cone.
Michigan Math. J. (2006).

I. Arzhantsev, U. Derenthal, J. Hausen, A. Laface. Cox Rings,
Cambridge studies in advanced mathematics (2014).

A.-M. Castravet. The Cox ring of M0,6. Trans. Amer. Math. Soc.
(2009).

M. M. Bernal Guillen. Relations in the Cox Ring of M0,6. PhD (2012).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 62 / 76

https://arxiv.org/abs/1603.09241

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in P4,...) and g ∈N0 :

X

∑∞
d=1Ng ,d · qd = Ag (q)

X ∗

Bg (Q)

Ng ,d = Gromov-Witten invariants Integrals on M(X ∗)

Intersection numbers on moduli

space of stable maps Mg ,n(X , d)
???

A-model B-model

mirror construction

Q=Q(q)

Mirror constructions: Greene-Plesser ’90, Batyrev ’93,...
String theory: Candelas-Horowitz-Strominger-Witten ’85, Candelas-
de la Ossa-Green-Parkes ’91,...
Algebraic/symplectic geometry: Fulton-Pandharipande ’95,
Kontsevich ’95, Behrend-Fantechi ’97,...

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 63 / 76

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in P4,...) and g ∈N0 :

X

∑∞
d=1Ng ,d · qd = Ag (q)

X ∗

Bg (Q)

Ng ,d = Gromov-Witten invariants Integrals on M(X ∗)

Intersection numbers on moduli

space of stable maps Mg ,n(X , d)
???

A-model B-model

mirror construction

Q=Q(q)

Mirror constructions: Greene-Plesser ’90, Batyrev ’93,...
String theory: Candelas-Horowitz-Strominger-Witten ’85, Candelas-
de la Ossa-Green-Parkes ’91,...
Algebraic/symplectic geometry: Fulton-Pandharipande ’95,
Kontsevich ’95, Behrend-Fantechi ’97,...

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 63 / 76

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in P4,...) and g ∈N0 :

X

∑∞
d=1Ng ,d · qd = Ag (q)

X ∗

Bg (Q)

Ng ,d = Gromov-Witten invariants Integrals on M(X ∗)

Intersection numbers on moduli

space of stable maps Mg ,n(X , d)
???

A-model B-model

mirror construction

Q=Q(q)

Mirror constructions: Greene-Plesser ’90, Batyrev ’93,...

String theory: Candelas-Horowitz-Strominger-Witten ’85, Candelas-
de la Ossa-Green-Parkes ’91,...
Algebraic/symplectic geometry: Fulton-Pandharipande ’95,
Kontsevich ’95, Behrend-Fantechi ’97,...

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 63 / 76

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in P4,...) and g ∈N0 :

X

∑∞
d=1Ng ,d · qd = Ag (q)

X ∗

Bg (Q)

Ng ,d = Gromov-Witten invariants Integrals on M(X ∗)

Intersection numbers on moduli

space of stable maps Mg ,n(X , d)
???

A-model B-model

mirror construction

Q=Q(q)

Mirror constructions: Greene-Plesser ’90, Batyrev ’93,...
String theory: Candelas-Horowitz-Strominger-Witten ’85, Candelas-
de la Ossa-Green-Parkes ’91,...

Algebraic/symplectic geometry: Fulton-Pandharipande ’95,
Kontsevich ’95, Behrend-Fantechi ’97,...

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 63 / 76

Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in P4,...) and g ∈N0 :

X

∑∞
d=1Ng ,d · qd = Ag (q)

X ∗

Bg (Q)

Ng ,d = Gromov-Witten invariants Integrals on M(X ∗)

Intersection numbers on moduli

space of stable maps Mg ,n(X , d)
???

A-model B-model

mirror construction

Q=Q(q)

Mirror constructions: Greene-Plesser ’90, Batyrev ’93,...
String theory: Candelas-Horowitz-Strominger-Witten ’85, Candelas-
de la Ossa-Green-Parkes ’91,...
Algebraic/symplectic geometry: Fulton-Pandharipande ’95,
Kontsevich ’95, Behrend-Fantechi ’97,...

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 63 / 76

Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 64 / 76

Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 64 / 76

Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 64 / 76

Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 64 / 76

Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 64 / 76

Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 64 / 76

Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 64 / 76

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).
Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

Nd ,g = 1
|Aut(f)| -weighted number of degree d covers f : C → E , where C

is smooth of genus g and f has 2g − 2 simple ramifications points.

according to Riemann-Hurwitz formula 2g(C)− 2 = d · (2g(E)− 2) + ∑P∈C (e(P)− 1)

Nd ,0 = 0, so have to look at g ≥ 1 invariants!

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 65 / 76

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).
Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

Nd ,g = 1
|Aut(f)| -weighted number of degree d covers f : C → E , where C

is smooth of genus g and f has 2g − 2 simple ramifications points.

according to Riemann-Hurwitz formula 2g(C)− 2 = d · (2g(E)− 2) + ∑P∈C (e(P)− 1)

Nd ,0 = 0, so have to look at g ≥ 1 invariants!

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 65 / 76

Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).
Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

Nd ,g = 1
|Aut(f)| -weighted number of degree d covers f : C → E , where C

is smooth of genus g and f has 2g − 2 simple ramifications points.

according to Riemann-Hurwitz formula 2g(C)− 2 = d · (2g(E)− 2) + ∑P∈C (e(P)− 1)

Nd ,0 = 0, so have to look at g ≥ 1 invariants!

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 65 / 76

Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E)

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)
partial correspondence theorem (Markwig-Rau ’09, Mikhalkin ’05)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 66 / 76

Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E)

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)
partial correspondence theorem (Markwig-Rau ’09, Mikhalkin ’05)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 66 / 76

Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E)

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)

partial correspondence theorem (Markwig-Rau ’09, Mikhalkin ’05)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 66 / 76

Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E)

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)
partial correspondence theorem (Markwig-Rau ’09, Mikhalkin ’05)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 66 / 76

Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .

Tropical mirror theorem for all g as corollary to

refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Computation of refined Feynman integrals.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 67 / 76

Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .

Tropical mirror theorem for all g as corollary to

refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Computation of refined Feynman integrals.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 67 / 76

Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .

Tropical mirror theorem for all g as corollary to

refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Computation of refined Feynman integrals.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 67 / 76

Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .

Tropical mirror theorem for all g as corollary to

refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Computation of refined Feynman integrals.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 67 / 76

Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g .

By g(Γ) = 1− |vert(Γ)|+ |edges(Γ)| and 3 |vert(Γ)| = 2 |edges(Γ)|

|vert(Γ)| = 2g − 2 |edges(Γ)| = 3g − 3

Fix labeling zi for vertices and qi for edges.

Example

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 68 / 76

Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g .

By g(Γ) = 1− |vert(Γ)|+ |edges(Γ)| and 3 |vert(Γ)| = 2 |edges(Γ)|

|vert(Γ)| = 2g − 2 |edges(Γ)| = 3g − 3

Fix labeling zi for vertices and qi for edges.

Example

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 68 / 76

Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g .

By g(Γ) = 1− |vert(Γ)|+ |edges(Γ)| and 3 |vert(Γ)| = 2 |edges(Γ)|

|vert(Γ)| = 2g − 2 |edges(Γ)| = 3g − 3

Fix labeling zi for vertices and qi for edges.

Example

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 68 / 76

Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g .

By g(Γ) = 1− |vert(Γ)|+ |edges(Γ)| and 3 |vert(Γ)| = 2 |edges(Γ)|

|vert(Γ)| = 2g − 2 |edges(Γ)| = 3g − 3

Fix labeling zi for vertices and qi for edges.

Example

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 68 / 76

Feynman integrals (B-side)

Definition (Propagator)

P(z , q) = − 1

4π2
℘(z , q)− 1

12
E2(q) for z ∈ E = C/Λ

with Weierstraß-℘-function ℘ = 1
z2

+ ... and the Eisenstein series

E2 = 1− 24 ∑∞
d=1 σ1(d)q

2d = 1− 24q2 − 72q4 − ... σ1(d) = ∑m|d m

Definition (Feynman integral)

For ordering Ω ∈ S2g−2 of integration paths on E

IΓ,Ω =
∫

γ2g−2
...
∫

γ1

(
∏

e∈edges(Γ)
P(z+e − z−e , q)

)
dzΩ(1)...dzΩ(2g−2)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 69 / 76

Feynman integrals (B-side)

Definition (Propagator)

P(z , q) = − 1

4π2
℘(z , q)− 1

12
E2(q) for z ∈ E = C/Λ

with Weierstraß-℘-function ℘ = 1
z2

+ ... and the Eisenstein series

E2 = 1− 24 ∑∞
d=1 σ1(d)q

2d = 1− 24q2 − 72q4 − ... σ1(d) = ∑m|d m

Definition (Feynman integral)

For ordering Ω ∈ S2g−2 of integration paths on E

IΓ,Ω =
∫

γ2g−2
...
∫

γ1

(
∏

e∈edges(Γ)
P(z+e − z−e , q)

)
dzΩ(1)...dzΩ(2g−2)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 69 / 76

Feynman integrals (B-side)

Definition (Propagator)

P(z , q) = − 1

4π2
℘(z , q)− 1

12
E2(q) for z ∈ E = C/Λ

with Weierstraß-℘-function ℘ = 1
z2

+ ... and the Eisenstein series

E2 = 1− 24 ∑∞
d=1 σ1(d)q

2d = 1− 24q2 − 72q4 − ... σ1(d) = ∑m|d m

Definition (Feynman integral)

For ordering Ω ∈ S2g−2 of integration paths on E

IΓ,Ω =
∫

γ2g−2
...
∫

γ1

(
∏

e∈edges(Γ)
P(z+e − z−e , q)

)
dzΩ(1)...dzΩ(2g−2)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 69 / 76

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig ’10) and
(Bertrand-Brugallé-Mikhalkin ’11) obtain correspondence theorem:

Theorem (BBBM ’15)

Nd ,g = Ntrop
d ,g by correspondence of tropical and algebraic covers.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 70 / 76

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig ’10) and
(Bertrand-Brugallé-Mikhalkin ’11) obtain correspondence theorem:

Theorem (BBBM ’15)

Nd ,g = Ntrop
d ,g by correspondence of tropical and algebraic covers.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 70 / 76

Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig ’10) and
(Bertrand-Brugallé-Mikhalkin ’11) obtain correspondence theorem:

Theorem (BBBM ’15)

Nd ,g = Ntrop
d ,g by correspondence of tropical and algebraic covers.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 70 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 = ?

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with

2g − 2 = 4 vertices
3g − 3 = 6 edges
no bridges (weight 0 edges would be contracted):

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 71 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 = ?

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with

2g − 2 = 4 vertices
3g − 3 = 6 edges
no bridges

(weight 0 edges would be contracted):

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 71 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 = ?

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with

2g − 2 = 4 vertices
3g − 3 = 6 edges
no bridges (weight 0 edges would be contracted):

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 71 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 72 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36

mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 72 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6

mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 72 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 72 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2

mult(π) = 22 = 4

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 72 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 72 / 76

Tropical Hurwitz numbers – Example

Ntrop
3,3 = 112 + 48 = 160

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 72 / 76

Refined Feynman integrals

Definition (Refined Feynman integrals)

IΓ,Ω(q1, ..., q3g−3) =
∫

γ2g−2
...
∫

γ1

(
3g−3

∏
k=1

P(z+k − z−k , qk)

)
dzΩ(1)...dzΩ(2g−2)

Example

For

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

we have to integrate

P(z1− z2, q1) ·P(z1− z2, q2) ·P(z1− z3, q3) ·P(z2− z4, q4) ·P(z3− z4, q5) ·P(z3− z4, q6)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 73 / 76

Refined Feynman integrals

Definition (Refined Feynman integrals)

IΓ,Ω(q1, ..., q3g−3) =
∫

γ2g−2
...
∫

γ1

(
3g−3

∏
k=1

P(z+k − z−k , qk)

)
dzΩ(1)...dzΩ(2g−2)

Example

For

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

we have to integrate

P(z1− z2, q1) ·P(z1− z2, q2) ·P(z1− z3, q3) ·P(z2− z4, q4) ·P(z3− z4, q5) ·P(z3− z4, q6)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 73 / 76

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM ’13)

∑
a

Ntrop
a,Γ,Ω q2a = IΓ,Ω(q1, ..., q3g−3)

Setting qi = q we get (using the action of Aut(Γ) on labeled covers):

Corollary (Tropical mirror theorem)

∑
d

Ntrop
d ,g q2d = ∑

Γ

1

|Aut(Γ)|∑Ω
IΓ,Ω(q)

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves Ag = Bg for all g .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 74 / 76

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM ’13)

∑
a

Ntrop
a,Γ,Ω q2a = IΓ,Ω(q1, ..., q3g−3)

Setting qi = q we get (using the action of Aut(Γ) on labeled covers):

Corollary (Tropical mirror theorem)

∑
d

Ntrop
d ,g q2d = ∑

Γ

1

|Aut(Γ)|∑Ω
IΓ,Ω(q)

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves Ag = Bg for all g .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 74 / 76

Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM ’13)

∑
a

Ntrop
a,Γ,Ω q2a = IΓ,Ω(q1, ..., q3g−3)

Setting qi = q we get (using the action of Aut(Γ) on labeled covers):

Corollary (Tropical mirror theorem)

∑
d

Ntrop
d ,g q2d = ∑

Γ

1

|Aut(Γ)|∑Ω
IΓ,Ω(q)

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves Ag = Bg for all g .

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 74 / 76

Computing Feynman integrals

By coordinate change xk = exp(iπzk),

path γk becomes circle around 0,
factor 1

xk
, integral becomes residue, difference becomes quotient.

Proposition (BBBM ’15)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w)q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy)2w
for a > 0

Theorem (BBBM ’15)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 75 / 76

Computing Feynman integrals

By coordinate change xk = exp(iπzk), path γk becomes circle around 0,

factor 1
xk

, integral becomes residue, difference becomes quotient.

Proposition (BBBM ’15)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w)q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy)2w
for a > 0

Theorem (BBBM ’15)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 75 / 76

Computing Feynman integrals

By coordinate change xk = exp(iπzk), path γk becomes circle around 0,
factor 1

xk
,

integral becomes residue, difference becomes quotient.

Proposition (BBBM ’15)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w)q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy)2w
for a > 0

Theorem (BBBM ’15)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 75 / 76

Computing Feynman integrals

By coordinate change xk = exp(iπzk), path γk becomes circle around 0,
factor 1

xk
, integral becomes residue,

difference becomes quotient.

Proposition (BBBM ’15)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w)q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy)2w
for a > 0

Theorem (BBBM ’15)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 75 / 76

Computing Feynman integrals

By coordinate change xk = exp(iπzk), path γk becomes circle around 0,
factor 1

xk
, integral becomes residue, difference becomes quotient.

Proposition (BBBM ’15)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w)q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy)2w
for a > 0

Theorem (BBBM ’15)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 75 / 76

Computing Feynman integrals

By coordinate change xk = exp(iπzk), path γk becomes circle around 0,
factor 1

xk
, integral becomes residue, difference becomes quotient.

Proposition (BBBM ’15)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w)q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy)2w
for a > 0

Theorem (BBBM ’15)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 75 / 76

Computing Feynman integrals

By coordinate change xk = exp(iπzk), path γk becomes circle around 0,
factor 1

xk
, integral becomes residue, difference becomes quotient.

Proposition (BBBM ’15)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w)q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy)2w
for a > 0

Theorem (BBBM ’15)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 75 / 76

Sketch of Proof

{labeled tropical covers}
1:1
� {constant products of Laurent monomials}

order the vertices according to Ω,
associate edges of weight ai to Laurent monomials.

Example

q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

x1 < x3 < x4 < x2 a = (0, 2, 2, 0, 1, 0)(
x1
x3

)2
· 2 ·

(
x2
x1

)2·2
·
(
x1
x2

)2
·
(
x4
x2

)2
·
(
x4
x3

)2
· 2 ·

(
x3
x4

)2·2

q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 76 / 76

Sketch of Proof

{labeled tropical covers}
1:1
� {constant products of Laurent monomials}

order the vertices according to Ω,

associate edges of weight ai to Laurent monomials.

Example

q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

x1 < x3 < x4 < x2 a = (0, 2, 2, 0, 1, 0)(
x1
x3

)2
· 2 ·

(
x2
x1

)2·2
·
(
x1
x2

)2
·
(
x4
x2

)2
·
(
x4
x3

)2
· 2 ·

(
x3
x4

)2·2

q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 76 / 76

Sketch of Proof

{labeled tropical covers}
1:1
� {constant products of Laurent monomials}

order the vertices according to Ω,
associate edges of weight ai to Laurent monomials.

Example

q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

x1 < x3 < x4 < x2 a = (0, 2, 2, 0, 1, 0)(
x1
x3

)2
· 2 ·

(
x2
x1

)2·2
·
(
x1
x2

)2
·
(
x4
x2

)2
·
(
x4
x3

)2
· 2 ·

(
x3
x4

)2·2

q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 76 / 76

Sketch of Proof

{labeled tropical covers}
1:1
� {constant products of Laurent monomials}

order the vertices according to Ω,
associate edges of weight ai to Laurent monomials.

Example

q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

x1 < x3 < x4 < x2

a = (0, 2, 2, 0, 1, 0)(
x1
x3

)2
· 2 ·

(
x2
x1

)2·2
·
(
x1
x2

)2
·
(
x4
x2

)2
·
(
x4
x3

)2
· 2 ·

(
x3
x4

)2·2

q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 76 / 76

Sketch of Proof

{labeled tropical covers}
1:1
� {constant products of Laurent monomials}

order the vertices according to Ω,
associate edges of weight ai to Laurent monomials.

Example

q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

x1 < x3 < x4 < x2 a = (0, 2, 2, 0, 1, 0)

(
x1
x3

)2
· 2 ·

(
x2
x1

)2·2
·
(
x1
x2

)2
·
(
x4
x2

)2
·
(
x4
x3

)2
· 2 ·

(
x3
x4

)2·2

q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 76 / 76

Sketch of Proof

{labeled tropical covers}
1:1
� {constant products of Laurent monomials}

order the vertices according to Ω,
associate edges of weight ai to Laurent monomials.

Example

q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

x1 < x3 < x4 < x2 a = (0, 2, 2, 0, 1, 0)(
x1
x3

)2
· 2 ·

(
x2
x1

)2·2
·
(
x1
x2

)2
·
(
x4
x2

)2
·
(
x4
x3

)2
· 2 ·

(
x3
x4

)2·2

q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 76 / 76

Sketch of Proof

{labeled tropical covers}
1:1
� {constant products of Laurent monomials}

order the vertices according to Ω,
associate edges of weight ai to Laurent monomials.

Example

q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

x1 < x3 < x4 < x2 a = (0, 2, 2, 0, 1, 0)(
x1
x3

)2
· 2 ·

(
x2
x1

)2·2
·
(
x1
x2

)2
·
(
x4
x2

)2
·
(
x4
x3

)2
· 2 ·

(
x3
x4

)2·2

q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 76 / 76

References

J. Böhm, K. Bringmann, A. Buchholz, H. Markwig, Tropical mirror
symmetry for elliptic curves, J. Reine Angew. Math. (2015).

J. Böhm, K. Bringmann, A. Buchholz, H. Markwig, ellipticcovers.lib.
A Singular 4 library for Gromov-Witten invariants of elliptic curves,
Singular distribution.

A. Okounkov, R. Pandharipande, Gromov-Witten theory, Hurwitz
theory and completed cycles, Ann. Math. 163 (2006).

R. Dijkgraaf, Mirror symmetry and elliptic curves, in Progr. Math. 129
(1995).

M. Gross, Mirror symmetry for P2 and tropical geometry, Adv. Math.
224 (2010).

B. Bertrand, E. Brugallé, G. Mikhalkin, Tropical open Hurwitz
numbers, Rend. Semin. Mat. Univ. Padova 125 (2011).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 76 / 76

http://www.singular.uni-kl.de/Manual/latest/sing_1960.htm

