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Singular

Computer algebra system for polynomial computations, over 30
development teams worldwide, over 140 libraries for advanced topics.

https://www.singular.uni-kl.de/

Special emphasis on algebraic geometry, commutative and
non-commutative algebra, singularity theory, packages for convex and
tropical geometry.
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Parametrizing Rational Curves

Example
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Parametrizing Rational Curves

Example

We consider the degree-5 curve with equation

x5 + 10x4y + 20x3y2 + 130x2y3 − 20xy4 + 20y5 − 2x4z

− 40x3yz − 150x2y2z − 90xy3z − 40y4z + x3z2 + 30x2yz2

+ 110xy2z2 + 20y3z2 = 0.

Genus Formula. pg (C ) = pa(C )− δ(C ) = pa(C )−∑P∈Sing(Γ)δP(C )
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Parametrizing Rational Curves

Example
> ring R = 0, (x,y,z), dp;

> poly f = x5+10x4y+20x3y2+130x2y3-20xy4+20y5-2x4z-40x3yz-150x2y2z

-90xy3z-40y4z+x3z2+30x2yz2+110xy2z2+20y3z2;

> LIB "paraplanecurves.lib";

> genus(f);

0

> paraPlaneCurve(f);
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The Parametrization Algorithm

Example
> ideal AI = adjointIdeal(f); // requires normalization, integral bases

> AI;

[1]=y3-y2z

[2]=xy2-xyz

[3]=x2y-xyz

[4]=x3-x2z

> def Rn = mapToRatNormCurve(f,AI);

> setring(Rn);

> RNC;

RNC[1]=y(2)*y(3)-y(1)*y(4)

RNC[2]=20*y(1)*y(2)-20*y(2)^2+130*y(1)*y(4)

+20*y(2)*y(4)+10*y(3)*y(4)+y(4)^2

RNC[3]=20*y(1)^2-20*y(1)*y(2)+130*y(1)*y(3)

+10*y(3)^2+20*y(1)*y(4)+y(3)*y(4)
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The Parametrization Algorithm
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The Parametrization Algorithm

Example
> LIB "sing.lib";

> radical(slocus(RNC));

[1]=y(4)

[2]=y(3)

[2]=y(2)

[1]=y(1)

> rncAntiCanonicalMap(RNC);

[1]=2*y(2)+13*y(4)

[2]=y(4)

Remark

May require quadratic field extension in even-degree case.
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The Main Computational Tool: Gröbner Bases

Division with remainder in one variable successively eliminates the highest
power.

In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉
Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
of I . Then

f ∈ I ⇐⇒ NF (f ,G ) = 0
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Division with remainder in one variable successively eliminates the highest
power. In more than one variable we have to fix a monomial ordering (a
total ordering compatible with multiplication).
Divide x2 − y2 durch x2 + y und xy + x with respect to lexicographic
ordering.

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

so remainder 6= 0, but

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x) ∈ I :=

〈
x2 + y , xy + x

〉

Problem: Lead terms cancel, division algorithm can’t do that.
Solution: Add y2 + y to the divisor set. The result is a Gröbner basis G
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The Main Computational Tool: Gröbner Bases

Example

Gröbner Bases can be used to:

eliminate variables (→ birational geometry),

ideal intersections,

compute ideal quotients

(I : J) = {a ∈ R | aJ ⊂ I}

for ideals I , J ⊂ R,

saturations,

syzygies (→ homological algebra).

Greuel, G.-M., Pfister, G.: A Singular Introduction to Commutative
Algebra. Springer.
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Normalization

Setup: A = K [X ]/I domain.

Definition

The normalization A of A is the integral closure of A in its quotient field
Q(A).

We call A normal if A = A.

Theorem (Noether)

A is a finitely generated A-module.

Example

Curve I =
〈
x3 + x2 − y2

〉
⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= A
x 7→ t2 − 1
y 7→ t3 − t

As an A-module A =
〈

1, y
x

〉
.
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Normalization

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1
g (gJ :A J) ⊂ A

a 7→ a·
ϕ 7→ ϕ(g )

g

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =
1
g (gJi :Ai

Ji ) Ji =
√
JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1.

Terminates since A is Noetherian.
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Grauert-Remmert criterion

Non-normal locus N(A) is contained in singular locus Sing(A).

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A be an ideal with J =
√
J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ a·

is an isomorphism.

=⇒ For J =
√

Jac(I ) algorithm terminates with Am = Am+1 = A, since:

Lemma

N(Ai ) ⊂ V (
√
JAi )
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Local Techniques for Normalization

Theorem (BDLSS, 2011)

Suppose
Sing(A) = {P1, . . . ,Pr}

and
A ⊂ Bi ⊂ A

is the ring given by the normalization algorithm applied to Pi instead of J.
Then

(Bi )Pi
= APi

(Bi )Q = AQ for all Pi 6= Q ∈ SpecA,

and
A = B1 + . . . + Br .

We call Bi the minimal local contribution to A at Pi .
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(Bi )Pi
= APi
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Adjoint ideals

Setup: Γ ⊂ Pr integral, non-degenerate projective curve, π : Γ→ Γ
normalization map, I (Γ) $ I ⊂ k [x0, ..., xr ] saturated homogeneous ideal.

Let H be pullback of hyperplane, ∆(I ) pullback of Proj(S/I ). Then

0→ ĨOΓ → π∗(ĨOΓ)→ F → 0
gives for m� 0 linear maps

0→ Im/I (Γ)m
$m→ H0

(
Γ,OΓ (mH − ∆(I ))

)
→ H0 (Γ,F )→ 0

Definition

I is an adjoint ideal of Γ if $m surjective for m� 0.

h0 (Γ,F ) = ∑P∈Sing(Γ) `(IPOΓ,P/IP) =⇒

Theorem

I adjoint ⇐⇒ IPOΓ,P = IP for all P ∈ Sing(Γ).

Conductor is largest ideal with this property.
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Adjoint ideals

Definition

Gorenstein adjoint ideal is the unique largest homogeneous ideal
G ⊂ K [x0, . . . , xr ] with

GP = COΓ,P for all P ∈ Sing(Γ).

Applications:

Example

If Γ is plane curve of degree n, then Gn−3 cuts out canonical linear series.

Example

If Γ is plane rational of degree n then Gn−2 maps Γ to rational normal
curve of degree n− 2 in Pn−2.

Example

Brill-Noether-Algorithm for computing Riemann-Roch spaces.
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Example

Minimal generators of G for rational curve of degree 5:
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Example
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Local-to-global algorithm

Definition

The local adjoint ideal of Γ at P ∈ Sing Γ is the largest homogeneous
ideal G(P) ⊂ k [x0, . . . , xr ] with

G(P)P = COΓ,P

Lemma (BDLP, 2015)

G =
⋂

P∈Sing Γ
G(P)

The G(P) can be computed in parallel via normalization.

Algorithm (BDLP, 2015)

If 1
dU is the minimal local contribution at P then

G(P) = (d : U)h
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Special types of singularities

If Γ ⊂ P2 has a singularity of type An at P = (0 : 0 : 1), then given by

f = T 2 +W n+1 with T ,W ∈ C[[x , y ]].

Compute Tj = T +O(j + 1) inductively.

Lemma

If P = (0, 0) is of type An and s =
⌊
n+1
2

⌋
, then

G(P) = 〈x s , Ts−1, y s〉h ⊂ C[x , y , z ]

Similar results for Dn, En and other singularities in Arnold’s list.

Example

f = x4 − y2 + x5 with A3 singularity. Then G(P) =
〈
x2, y

〉
.
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Parallel Computations in Singular

Example
> LIB("parallel.lib","random.lib");

> ring R = 0,x(1..4),dp;

> ideal I = randomid(maxideal(3),3,100);

> proc sizeStd(ideal I, string monord){
def R = basering; list RL = ringlist(R);

RL[3][1][1] = monord; def S = ring(RL); setring(S);

return(size(std(imap(R,I))));}
> list commands = "sizeStd","sizeStd";

> list args = list(I,"lp"),list(I,"dp");

> parallelWaitFirst(commands, args);

[1] empty list

[2] 11

> parallelWaitAll(commands, args);

[1] 55

[2] 11
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Parallelization

There are algorithms whose basic strategy is inherently parallel, whereas
others are sequential in nature.

Example

Normalization is inherently sequential.

Local-to-global algorithms for normalization and adjoint ideal are
parallel, if the singular locus decomposes.

Villamayor’s constructive version of Hironaka’s desingularization
theorem is inherently parallel by the iterative use of blow-ups in charts.

Modular methods can be used to turn sequential algorithms over Q

into parallel ones.
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Example: Resolution of Singularities

Theorem (Hironaka, 1964)

For every algebraic variety over a field K with charK = 0 a
desingularization can be obtained by a finite sequence of blow-ups along
smooth centers.

Example

Blow-up of the node resolves the singularity

←−

by replacing it by a line of points corresponding to its tangent directions,
hence separating the two branches of the curve.
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Hironaka Resolution of Singularities

Example:
x2 − y2z2 = 0

Gluing StepResolution Step

Search for
Center of
Blowup

Blowup
in

Charts required to draw information
from resolution data

Traversal of Tree of Charts
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Hironaka Resolution of Singularities

Example
> LIB "resolve.lib";

> ring R= 0,(x,y,z),dp;

> ideal I = x2-y2z2;

> list L = resolve(I);

> def S1 = L[1][1];

> setring S1;

> showBO(BO);

==== Ambient Space:

[1]=0

==== Ideal of Variety:

[1]=y(1)^2-1

==== Exceptional Divisors:

...
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Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76



Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76



Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.

2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76



Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76



Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.

Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76



Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76



Modular computations

Many exact computations in computer algebra are carried out over Q

and extensions thereof.

Modular techniques are an important tool to improve performance of
algorithms over Q.

Fundamental approach:

1 Compute modulo primes.
2 Reconstruct result over Q.

Benefits:

Avoid intermediate coefficient growth.
Obtain parallel version of the algorithm.

Goal:
General reconstruction scheme for algorithms in commutative algebra,
algebraic geometry, number theory.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 27 / 76



Modular computations

Example

Compute
3

4
+

1

3
=

13

12

using modular techniques:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

3
4 7→ ( 2 , 6 , 9 , 26 )

+

1
3 7→ ( 2 , 5 , 4 , 34 )

q

( 4 , 4 , 2 , 60 ) 7→ 22684

How to obtain a rational number from 22684?
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Rational reconstruction

Theorem (Kornerup, Gregory, 1983)

The Farey map{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b,N) = 1

|a| , |b| ≤
√
(N − 1)/2

}
−→ Z/N

a
b 7−→ a · b−1

is injective. Efficient algorithm for preimage.

Example

Indeed, in the above example{
a
b ∈ Q

∣∣∣∣ gcd(a, b) = 1
gcd(b, 38885) = 1
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Basic concept for modular computations

1 Compute result over Z/pi for distinct primes p1, . . . , pr .

2 For N = p1 · . . . · pr compute lift w.r.t Chinese remainder isomorphism

Z/N ∼= Z/p1 × . . .×Z/pr

3 If exists, compute preimage w.r.t injective Farey map.

4 Verify correctness of lift.

This will yield correct result, provided

N is large enough s.t. the Q-result is in source of Farey map, and

none of the pi is bad.

Definition

A prime p is called bad if the result over Q does not reduce modulo p to
the result over Z/p.
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Bad primes in Gröbner basis computations

For G ⊂ K [X ] = K [x1, . . . , xn] and a monomial ordering >, let LM(G ) be
the set of lead monomials of G .

For G ⊂ Z[X ] define

Gp := G ⊂ Z/p [X ].

Theorem (Arnold, 2003)

Suppose F = {f1, ..., fr} ⊂ Z[X ] with fi primitve, and

G is the reduced Gröbner basis of 〈F 〉 ⊂ Q[X ],

G (p) is the reduced Gröbner basis of 〈Fp〉, and

GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X ]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.
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GZ a minimal strong Gröbnerbasis of 〈F 〉 ⊂ Z[X ]. Then

p does not divide any lead coefficient in GZ ⇐⇒ LMG = LMG (p)

⇐⇒ Gp = G (p)

that is, p is not bad.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 31 / 76
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Bad primes in Gröbner basis computations

Example
> option("redSB");

> ring R = integer,(x, y, z),lp;

> poly f = x7y5 + x2yz9 + xz11 + y3z9;

> ideal I = groebner(ideal(diff(f, x), diff(f, y), diff(f,z)));

> apply(list(I[1..size(I)]),leadcoef);

13781115527868730344777310464613260 83521912290113517241074608876444 60

12 4 12 12 45349632 12 1473863040 12 22674816 12 3888 12 12 12 13608 12

108 54 6 2 27 3 1 4 2 2 1 216 1 2 3 1 540 12 108 27 3 1 9 3 1 1 1 1 1 7

1 5 1 1

and the bad primes are the prime factors

p = 2, 3, 5, 7, 11, 13, 257, 247072949, 328838088993550682027

Note: The lead coefficients of the Gröbner basis over Q involve only the
prime factors 2, 3, 5, 7, 13.
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Bad primes

Classification of bad primes:

Type 1: Input modulo p not valid (no problem)

Type 2: Failure in the course of the algorithm (e.g. matrix not
invertible modulo p, wastes computation time if happens)

Type 3: Computable invariant with known expected value (e.g.
dimension) is wrong (have to do expensive test for each prime,
although set of bad primes usually is finite)

Type 4: Computable invariant with unknown expected value (e.g.
lead ideal in Gröbner basis computations) is wrong (to detect by a
majority vote, have to compute invariant for each modular result and
store modular results)

Type 5: otherwise.
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Example of type 5 bad prime

For ideal I ⊂ Q[X ] and prime p define Ip = (I ∩Z[X ])p.

Example

Consider the algorithm I 7→
√

I + Jac(I ) for

I =
〈
x6 + y6 + 7x5z + x3y2z − 31x4z2 − 224x3z3 + 244x2z4 + 1632xz5 + 576z6

〉

Then w.r.t dp LM(I ) =
〈
x6
〉
= LM(I5)

U(0) =
√

I + Jac(I ) = 〈y , x − 4z〉 ∩ 〈y , x + 6z〉

U(5) =
√

I5 + Jac(I5) =
〈
y , x2 − z2

〉
= 〈y , x − z〉 ∩ 〈y , x + z〉

U(0)5 =
〈
y , (x + z)2

〉
Hence

U(0)5 6= U(5)

LM(U(0)) =
〈
y , x2

〉
= LM(U(5))
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U(0)5 =
〈
y , (x + z)2

〉

Hence
U(0)5 6= U(5)

LM(U(0)) =
〈
y , x2

〉
= LM(U(5))
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Error tolerant reconstruction

Goal: Reconstruct a
b from r ∈ Z/N in the presence of bad primes.

Algorithm: Find (x , y) with x
y = a

b in the lattice

Λ = 〈(N, 0), (r , 1)〉 ⊂ Z2

Lemma (BDFP, 2015)

All (x , y) ∈ Λ with x2 + y2 < N are collinear.

Proof.

Let λ = (x , y), µ = (c, d) ∈ Λ with x2 + y2, c2 + d2 < N. Then
yµ− dλ = (yc − xd , 0) ∈ Λ, so N |(yc − xd). By Cauchy–Schwarz
|yc − xd | < N, hence yc = xd .

Now suppose
N = N ′ ·M

with gcd(N ′,M) = 1.
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Error tolerant reconstruction

Think of N ′ as the product of the good primes with correct result s,
and of M as the product of the bad primes with wrong result t.

Theorem (BDFP, 2015)

If
r 7→ (s, t) with respect to Z/N ∼= Z/N ′ ×Z/M

and a

b
≡ s modN ′

then (aM, bM) ∈ Λ. So if

(a2 + b2)M < N ′,

then (by the lemma)

x

y
=

a

b
for all (x , y) ∈ Λ with (x2 + y2) < N

and such vectors exist. Moreover, if gcd(a, b) = 1 and (x , y) is a shortest
vector 6= 0 in Λ, we also have gcd(x , y)|M.
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Error tolerant reconstruction via Gauss-Lagrange

Hence, if N ′ � M, the Gauss-Lagrange-Algorithm for finding a shortest
vector (x , y) ∈ Λ gives a

b independently of t, provided x2 + y2 < N.

Algorithm (Error tolerant reconstruction)

function ErrorTolerantReconstruction(r::Integer, N::Integer)

a1 = [N, 0]

a2 = [r, 1]

while dot(a1, a1) > dot(a2, a2)

q = dot(a1, a2)//dot(a2, a2)

a1, a2 = a2, a1 - Integer(round(q))*a2

end

if dot(a1, a1) < N

return a1[1]//a1[2]

else

return false

end

end

Singular-kernel Julia Singular-interpreter

0.001 0.005 0.055
(in seconds, bitlength 500)
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Reconstruction via Gauss-Lagrange

Example

We reconstruct 13
12 from

22684 ∈ Z/38885

by determining a shortest vector in the lattice

〈(38885, 0), (22684, 1)〉 ⊂ Z2

via Gauss-Lagrange

(38885, 0) = 2 · (22684, 1) + (−6483,−2),

(22684, 1) = −3 · (−6483,−2) + (3235,−5),

(−6483,−2) = 2 · (3235,−5) + (−13,−12),

(3235,−5) = −134 · (−13,−12) + (1493,−1613).
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Reconstruction via Gauss-Lagrange

Example

Now introduce an error in the modular results:

Z/5 × Z/7 × Z/11 × Z/101 ∼= Z/38885

( 4 , 4 , 2 , 60 ) 7→ 22684

( 4 , 2 , 2 60 ) 7→ 464

Error tolerant reconstruction computes

(38885, 0) = 84 · (464, 1) + (−91,−84),

(464, 1) = −3 · (−91,−84) + (191,−251)

hence yields
91

84
=

7 · 13

7 · 12
=

13

12
.

Note that
(132 + 122) · 7 = 2191 < 5555 = 5 · 11 · 101.
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General reconstruction scheme

Setup: For ideal I ⊂ Q[X ] compute ideal (or module) U(0) associated to
I by deterministic algorithm.

Algorithm

For Ip compute result U(p) over Z/p for p in finite set of primes P .

Reduce P according to majority vote on LM(U(p)).

For N = ∏p∈P p compute termwise CRT–lift U(N) to Z/N.

Lift U(N) by error tolerant rational reconstruction to U.

Test Up = U(p) for random prime p.

Verify U = U(0).

If lift, test or verification fails, then enlarge P .

Theorem (BDFP, 2015)

If the set of bad primes for computing U(0) from I is finite, then this
algorithm terminates with the correct result.
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Timings in Singular for Adjoint Ideal

Plane curve fn of degree n with (n−12 ) singularities of type A1.

p
ar

al
le

l

pr
ob

ab
lis

it
ic

f5 f6 f7

locNormal 2.1 56 -
Maple-IB 5.1 47 318

LA 98 4400 -
IQ 1.3 54 3800
locIQ � 1.3 (1) 54 (1) 3800 (1)
ADE � .18 (1) 1.2 (1) 49 (1)

modLocIQ 6.4 [33] 19 [53] 150 [75]
� 6.2 [33] 18 [53] 104 [75]

� .36 (74) 1.6 (153) 51 (230)
� � .21 (74) 0.48 (153) 5.2 (230)

[primes] (cores)
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Comp. 35 (2003).

G.-M. Greuel, S. Laplagne, S. Seelisch, Normalization of rings, J.
Symb. Comp. (2010).

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 41 / 76

http://arxiv.org/abs/1505.05040


Singular and GPI-Space

Features of GPI-Space developed by Fraunhofer Institute for Industrial
Mathematics ITWM, Kaiserslautern:

Distributed run-time system suitable for massively parallel
computations.

Virtual memory layer.

Modeling with Petri nets.
Auto-parallelization engine.

Proof of concept integration of Singular in GPI-Space.
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GPI-Space: A Petri net

Clock at time t = 4:
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GPI-Space: Scheduler
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Singular and GPI-Space

Example

Algorithm for determining smoothness by local descent in codimension
relative to a smooth complete intersection (as in Hironaka’s resolution of
singularities). Descent to any desired size of minors in Jacobian criterion.

Boehm, J., Frühbis-Krüger: A smoothness test for higher
codimensions. arXiv:1603.09241 JSC (to appear).
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Good Quotients

The goal of Geometric Invariant Theory (GIT) is to assign to a given
algebraic variety X with action of a reductive group G a reasonable
quotient space X//G .

Two main problems:

1 The orbit space X/G is not a good candidate for X//G :

C∗ ×C → C, t · x = tx

Instead, for X affine define

X//G = SpecK [X ]G

as the spectrum of the (finitely generated) invariant ring of the
functions on X . For general X , glue the quotients of an affine
covering.

2 The quotient X//G may not carry much information.

Hence pass to open subset U ⊂ X .
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Good Quotients

Example

C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U = C2

U//C∗ = {pt}

U = C2\{0}

U//C∗ = P1
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GIT-Fan

In general, there are many choices for these open subsets U ⊂ X leading
to different quotients. To describe this behaviour, Dolgachev and Hu
introduced the GIT-fan, a polyhedral fan describing the variation of
GIT-quotients.

We focus on the action of an algebraic torus G = (C∗)k

on an affine variety X ⊂ Cr .

Setup:

ideal a ⊂ C[T1, . . . ,Tr ] defining X ,

matrix Q = (q1, . . . , qr ) ∈ Zk×r such that a is homogeneous w.r.t.
grading deg(Ti ) = qi ∈ Zk .

Example

For C∗ ×C2 → C2, t · (x , y) = (tx , ty)

U1 = C2

U2 = C2\{0} Λ(〈0〉 , (1, 1)) =
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Computing GIT-Fans

In case of a torus acting on an affine variety, Berchthold/Hausen and
Keicher have developed a method for computing the GIT-fan.
Decomposition into torus orbits corresponding to faces γ ≺ Qr

≥0:

Cr =
⋃

γ
O(γ)

O(γ) = (C∗)r ·∑ei∈γ
ei = {(z1, . . . , zr ) ∈ Cr | zi 6= 0⇔ ei ∈ γ}

Proposition

Face γ ≺ Qr
≥0 is called an a-face if the following equivalent conditions are

satisfied:

1 X ∩O(γ) 6= ∅
2 There is x ∈ X with xi 6= 0⇔ ei ∈ γ

3
(
a|Ti=0 for ei /∈γ

)
: 〈T1 · · ·Tr 〉∞ 6= 〈1〉

The orbit cones are the Q(γ) = cone(qi | ei ∈ γ) with γ an a-face.
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Computing GIT-Fans

1 Determine a-faces.

2 Compute set of orbit cones

Ω = {Q(γ) | γ an a-face}

where

Q(γ) = cone(qi | ei ∈ γ) ⊂ Γ = Q(Qr
≥0) = cone(q1, . . . , qr ) ⊂ Qk

is projection of γ with respect to Q.

3 Determine GIT-fan:

Λ(a,Q) = {λΩ(w) | w ∈ Γ} where λΩ(w) =
⋂

w∈η∈Ω

η
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GIT-Algorithm

Algorithm

Input: Ideal a ⊂ C[T1, . . . ,Tr ] and matrix Q ∈ Zk×r of full rank such
that a is homogeneous w.r.t. multigrading by Q.

Output: The set of maximal cones of Λ(a,Q).

1: A := {γ ≺ Qr
≥0 | γ is an a-face}

2: Ω := {Q(γ) | γ ∈ A}
3: Choose a vector w0 ∈ Q(Qr

≥0) such that dim(λΩ(w0)) = k.
4: C := {λΩ(w0)}
5: F := {(η, λΩ(w0)) | η ≺ λΩ(w0) interior facet}.
6: while there is (η, λ) ∈ F do

7: Find w ∈ Q(γ) such that w 6∈ λ and λΩ(w) ∩ λ = η.
8: C := C ∪ {λΩ(w)}
9: F := F 	 {(τ, λΩ(w)) | τ ⊂ λΩ(w) interior facet}

10: return C
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Fast Monomial Containment Test

Generalization of (Sturmfels, 1996), where degree reverse lex (dp) is used:

Proposition

Let > be a monomial ordering on R = K [Y1, . . . ,Yn] and G a Gröbner
basis of I . Suppose that for all f ∈ G

Yn | f ⇐⇒ Yn | LM>(f ).

Then {
f

Y i
n

∣∣∣∣ f ∈ G and i ≥ 0 maximal such that Y i
n | f

}
is a Gröbner basis for I : Y ∞

n .

Algorithm

To compute I : (Y1 · . . . · Yn)∞, replace any remainder r 6= 0 in
Buchberger’s algorithm by

r

Y a1
1 · . . . · Y an

n
where aj is maximal s.t. Y

aj
j | r .
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Timings

Saturation in product of variables for ideal a with 225 generators in 40
variables with variables not in J equal to 0:

{1, . . . , 40}\J 40− |J | a-face divgbsat gbsat sat rabinowitsch

{3, 4, 5, 7, . . . , 15} 28 no 1 761 517 342
{9, 11, 12, 13, 15} 35 no 1 57200 ∗ ∗
{11, 12, 13, 15} 36 no 1 44100 ∗ ∗
{9, 11, 14, 15} 36 yes 64 121000 ∗ ∗
{9, 11, 15} 37 yes 1170 114000 ∗ ∗
{9, 11, 13} 37 no 1 31400 ∗ ∗

(in seconds, * did not finish in > 2 days)
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Symmetry Groups of Torus Actions

Definition

A symmetry group of the action of (C∗)k on X is a subgroup G ⊂ Sr of
the symmetric group such that there are group actions

G × K[T1, . . . ,Tr ] → K[T1, . . . ,Tr ], (σ,Tj ) 7→ σ(Tj ) = cσ,j · Tσ(j)

G × Qr → Qr , (σ, ej ) 7→ σ(ej ) = eσ(j)

G × Qk → Qk , (σ, v) 7→ Aσ · v

with Aσ ∈ GL(k , Q) and cσ ∈ Tr such that G · a = a and that for each
σ ∈ G the following diagram is commutative:

ej 7−→ eσ(j)

Qr −→ Qr

Q ↓ ↓ Q
Qk −→

Aσ

Qk
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Representation of GIT-Cones

Perfect hash function for cones with compatible group action

hΩ : Λ(a,Q) → {0, 1}Ω , λ 7→

 Ω→ {0, 1}

ϑ 7→
{

1 λ ⊂ ϑ

0 λ 6⊂ ϑ



G × {0, 1}Ω → {0, 1}Ω , (g , b) 7→
[

Ω→ {0, 1}
ϑ 7→ b(g−1 · ϑ)

]
such that

g · hΩ(λ) = hΩ(g · λ).
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Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C
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13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76



Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)

5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
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13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76



Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.

6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}
7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
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13: else
14: F := F \ {(η, v)}
15: return C

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 54 / 76



Symmetric GIT-Algorithm

Algorithm (System of representatives of the G -orbits on Λ(a,Q)(k))

1: S := system of representatives of G-orbits of faces(Qr
≥0)

2: A := {γ ∈ S | γ is a-face}
3: Ω :=

⋃
γ∈A G ·Q(γ)

4: Ω := set of minimal elements of Ω(k)
5: Choose w0 ∈ Q(Γ) such that dim(λΩ(w0)) = k.
6: C := {λΩ(w0)}, H := {hΩ(λΩ(w0))}

7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}
8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
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7: F := {(η, v) | η ≺ λΩ(w0) interior facet with inner normal v}

8: while there is (η, v) ∈ F do

9: Find w ∈ Q(Γ) such that η ≺ λΩ(w) is a facet and −v ∈ λΩ(w)∨.
10: if G · hΩ(λΩ(w)) ∩H = ∅ then

11: C := C ∪ {λΩ(w)},H := H∪ {hΩ(λΩ(w))}
12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
13: else
14: F := F \ {(η, v)}
15: return C
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12: F := F 	 {(η̃, ṽ) | η̃ ≺ λΩ(w) interior facet w. inner normal ṽ}
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An Example with D4-Symmetry

Example

a = 〈T1T3 − T2T4〉 ⊂ K[T1, . . . ,T4] deg(Tj ) = qj

Q = (q1, . . . , q4) =

(
1 −1 −1 1
1 1 −1 −1

)

G = D4 = 〈(1, 2)(3, 4), (1, 2, 3, 4)〉 ⊂ S4

2 1

43

T T

TT

1

1

-1

-1

A(1,2)(3,4) =

(
−1 0
0 1

)
A(1,2,3,4) =

(
0 −1
1 0

)
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Example with D4-symmetry

Example

γ |G · γ| a|Ti=0 for ei /∈γ a-face

γ0 = cone(0) 1 0 true

γ1 = cone(e1) 4 0 true

γ2 = cone(e1, e2) 4 0 true

γ′2 = cone(e1, e3) 2 〈T1T3〉 false

γ3 = cone(e1, e2, e3) 4 〈T1T3〉 false

γ4 = cone(e1, e2, e3, e4) 1 〈T1T3 − T2T4〉 true

Q(γ0) = cone(0), Q(γ1) = cone
[

1
1

]
, Q(γ2) = cone

([
1
1

]
,

[
−1
1

])
, Q(γ4) = Q2

w0 =

(
0
1

)
(0, 0)

q1q2

q3 q4

λ(w0)
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Mori Dream Spaces

A projective variety X over C is called a Mori dream space if its Cox ring
R(X ) = ∑[D]∈Cl(X ) H

0(X ,OX (D)) is finitely generated.

Example

Fano varieties.

Projective toric varieties (⇔ R(X ) polynomial ring).

Like toric varieties, admit construction as GIT-quotient (Hu, Keel, 2000):

X = X̂//G
where

X̂ ⊂ X := SpecR(X ) open invariant
G := Spec C[Cl(X )]

Remark

The GIT-fan yields the Mori chamber decomposition, which describes all
birational modifications (analogous to the GKZ-fan of a toric varietiy).
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Moduli Spaces of Stable Maps

For the Deligne-Mumford compactification moduli space of stable
curves of genus 0 with n marked points M0,n (only double points, on each
component ≥ 3 marked or double points) we have:

M0,n for n ≤ 6 is a Mori dream space:

Castravet, 2009, for n = 6.

M0,n for n ≥ 10 is not a Mori dream space:

Castravet, Tevelev, 2013, for n ≥ 134.

Gonzáles, Karu, 2016, for n ≥ 13.

Hausen, Keicher, Laface, 2016, for n ≥ 10.
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Gonzáles, Karu, 2016, for n ≥ 13.

Hausen, Keicher, Laface, 2016, for n ≥ 10.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 58 / 76



Example: GIT-fan for G(2, 5)

Example

Cox ring of M0,5 is isomorphic to Z5-graded coordinate ring
R = K[T1, . . . ,T10]/a of affine cone over G(2, 5).

Symmetry group
action of

S5 ∼= G = 〈(2, 3)(5, 6)(9, 10), (1, 5, 9, 10, 3)(2, 7, 8, 4, 6)〉 ⊂ S10

number number of orbits

monomial containment tests 210 = 1024 34

a-faces 172 14

172 = (1+ 1) + (5+ 5) + (10+ 10+ 10+ 10+ 10) + (15+ 15) + 20+ (30+ 30)

|Ω(5)/G | = 4

|Λ(5)| = 76 = 1 + 10 + 30 + 10 + 20 + 5
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Example: GIT-fan for G(2, 5)

Adjacency graph of the maximal-dimensional GIT-cones and their orbits:
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Mori Chamber Decomposition of Mov(M0,6)
The moving cone Mov(M0,6) classifies all small modifications (rational
maps which are isomorphisms on open subsets which have a complement
of codimension ≥ 2).

Example

Cox ring is Z16-graded, has 40 generators (Castravet, 2009),

and 225
relations (Bernal Guillen, 2012), and natural G = S6–action.
The moving cone Mov(M0,6) has

176 512 225

GIT-cones of maximal dimension 16, which decompose into

249 605

orbits under the S6-action:

cardinality 1 6 10 15 20 30 45 60
no. of orbits 1 1 1 4 1 1 10 27

cardinality 72 90 120 180 240 360 720
no. of orbits 4 46 32 488 4 7934 241051

The cone with orbit length one is the semiample cone (dual of Mori cone).
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Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in P4,...) and g ∈N0 :

X

∑∞
d=1Ng ,d · qd = Ag (q)

X ∗

Bg (Q)

Ng ,d = Gromov-Witten invariants Integrals on M(X ∗)

Intersection numbers on moduli

space of stable maps Mg ,n(X , d)
???

A-model B-model

mirror construction

Q=Q(q)

Mirror constructions: Greene-Plesser ’90, Batyrev ’93,...
String theory: Candelas-Horowitz-Strominger-Witten ’85, Candelas-
de la Ossa-Green-Parkes ’91,...
Algebraic/symplectic geometry: Fulton-Pandharipande ’95,
Kontsevich ’95, Behrend-Fantechi ’97,...
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Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?
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Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).
Here, Gromov-Witten numbers are numbers of covers:

Definition (Hurwitz numbers)

Nd ,g = 1
|Aut(f )| -weighted number of degree d covers f : C → E , where C

is smooth of genus g and f has 2g − 2 simple ramifications points.

according to Riemann-Hurwitz formula 2g(C )− 2 = d · (2g(E )− 2) + ∑P∈C (e(P)− 1)

Nd ,0 = 0, so have to look at g ≥ 1 invariants!
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Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E )

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)
partial correspondence theorem (Markwig-Rau ’09, Mikhalkin ’05)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 66 / 76



Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E )

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)
partial correspondence theorem (Markwig-Rau ’09, Mikhalkin ’05)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 66 / 76



Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E )

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)

partial correspondence theorem (Markwig-Rau ’09, Mikhalkin ’05)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 66 / 76



Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E )

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)
partial correspondence theorem (Markwig-Rau ’09, Mikhalkin ’05)

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 66 / 76



Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .

Tropical mirror theorem for all g as corollary to

refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Computation of refined Feynman integrals.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 67 / 76



Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .

Tropical mirror theorem for all g as corollary to

refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Computation of refined Feynman integrals.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 67 / 76



Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .

Tropical mirror theorem for all g as corollary to

refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Computation of refined Feynman integrals.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 67 / 76



Tropical Mirror Symmetry

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .

Tropical mirror theorem for all g as corollary to

refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Computation of refined Feynman integrals.

Janko Boehm (TU-KL) Algorithms in Singular April 18, 2017 67 / 76



Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g .

By g(Γ) = 1− |vert(Γ)|+ |edges(Γ)| and 3 |vert(Γ)| = 2 |edges(Γ)|

|vert(Γ)| = 2g − 2 |edges(Γ)| = 3g − 3

Fix labeling zi for vertices and qi for edges.

Example

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1
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Feynman integrals (B-side)

Definition (Propagator)

P(z , q) = − 1

4π2
℘(z , q)− 1

12
E2(q) for z ∈ E = C/Λ

with Weierstraß-℘-function ℘ = 1
z2

+ ... and the Eisenstein series

E2 = 1− 24 ∑∞
d=1 σ1(d)q

2d = 1− 24q2 − 72q4 − ... σ1(d) = ∑m|d m

Definition (Feynman integral)

For ordering Ω ∈ S2g−2 of integration paths on E

IΓ,Ω =
∫

γ2g−2
...
∫

γ1

(
∏

e∈edges(Γ)
P(z+e − z−e , q)

)
dzΩ(1)...dzΩ(2g−2)
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Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig ’10) and
(Bertrand-Brugallé-Mikhalkin ’11) obtain correspondence theorem:

Theorem (BBBM ’15)

Nd ,g = Ntrop
d ,g by correspondence of tropical and algebraic covers.
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Tropical Hurwitz numbers – Example

Ntrop
3,3 = ?

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with

2g − 2 = 4 vertices
3g − 3 = 6 edges
no bridges (weight 0 edges would be contracted):
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Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4
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Tropical Hurwitz numbers – Example

Ntrop
3,3 = 112 + 48 = 160

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
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Refined Feynman integrals

Definition (Refined Feynman integrals)

IΓ,Ω(q1, ..., q3g−3) =
∫

γ2g−2
...
∫

γ1

(
3g−3

∏
k=1

P(z+k − z−k , qk )

)
dzΩ(1)...dzΩ(2g−2)

Example

For

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

we have to integrate

P(z1− z2, q1) ·P(z1− z2, q2) ·P(z1− z3, q3) ·P(z2− z4, q4) ·P(z3− z4, q5) ·P(z3− z4, q6)
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Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM ’13)

∑
a

Ntrop
a,Γ,Ω q2a = IΓ,Ω(q1, ..., q3g−3)

Setting qi = q we get (using the action of Aut(Γ) on labeled covers):

Corollary (Tropical mirror theorem)

∑
d

Ntrop
d ,g q2d = ∑

Γ

1

|Aut(Γ)|∑Ω
IΓ,Ω(q)

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves Ag = Bg for all g .
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Computing Feynman integrals

By coordinate change xk = exp(iπzk),

path γk becomes circle around 0,
factor 1

xk
, integral becomes residue, difference becomes quotient.

Proposition (BBBM ’15)

P(x , q) =
x2

(x2 − 1)2
+

∞

∑
a=1

∑
w |a

w(x2w + x−2w )q2a

Pa(x , y) :=

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy )2w
for a > 0

Theorem (BBBM ’15)

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k )
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Sketch of Proof

{labeled tropical covers}
1:1
� {constant products of Laurent monomials}

order the vertices according to Ω,
associate edges of weight ai to Laurent monomials.

Example

q2 q3 q5 q6

x2 q4 x4

x1 x3
q1

x1 < x3 < x4 < x2 a = (0, 2, 2, 0, 1, 0)(
x1
x3

)2
· 2 ·

(
x2
x1

)2·2
·
(
x1
x2

)2
·
(
x4
x2

)2
·
(
x4
x3

)2
· 2 ·

(
x3
x4

)2·2

q6, 2

q2, 2

q5, 1

q3, 1

q3, 1

q5, 1

q3, 1 q3, 1

q1, 1

q2, 2

x1

x3

x4

x2

q4, 1
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