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Calabi-Yau varieties and mirror symmetry

X Calabi-Yau variety KX = Ωd
X
�= OX

X

B-model of X
B-model of X �

A-model of X
A-model of X �

Algebraic geometry of X � $ Symplectic geometry of X
Deformations of

complex structure symplectic structure
Mcomplex (X �) � MK ähler (X )

Local isomorphism identi�es tangent spaces
H1 (TX �) = Hd�1,1 (X �) �= H1,1 (X )

by Bogomolov-Tian-Todorov if Moser
0 = H0 (TX �) = Hd�1,0 (X �)
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Calabi-Yau varieties and mirror symmetry

d = 3 :

Local isomorphism ! mirror map ! equality of formal power series

BX �
g (Q) = AX

g (q)
Q � eJ (Q ) = q

Quantum �eld theory of X � Gromov-Witten theory of X
Path integrals over

trivalent Feynman graphs
M̄g (X , d) 3 C ! X
(quantum cohomology if g = 0)

& .
Tropical geometry

On the level of tangent spaces: Interpret lattice points as
Deformations of X � Divisor classes of X
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Degenerations

UnderstandMcomplex (X ) near large complex structure limit X0.

X0 = fx0x1x2 = 0g � P2

Xt +t � [3]

X0 = f x0x3 = x1x2 = 0g � P3

Xt +t � [2] + t � [2]

X0 = fx0x1 = x1x2 = x2x3 = x3x4 = x4x0 = 0g � P4

Xt by structure theorem of Buchsbaum-Eisenbud

Q-Gorenstein toric Fano Y � Σ = Fan over Fano polytope ∆�

X! Spec C [t] � I � C [t]
Cox(Σ (1))
Special �ber X0 � Y I0 � Cox(Σ (1))
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Tropical mirror correspondence

Associate to X two metric complexes (abstract tropical varieties):

Strata(X0) � ∆ = Strata(Y ) TI0(I ) � rI0(I ) = fw j Lw (I0) = Ig

�

Hypersurfaces: rI0(I ) = ∆� (dual of Newton-polytope) ! Batyrev

Limit of points in the tropical �ber: Strata(X0) TI0 (I )
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Mirror symmetry for the elliptic curve

Complex structure modulus:

H = fs = s1 + is2 2 C js2 > 0g Γ = PSL(2,Z) modular group

ME = H/Γ moduli space of elliptic curves over C

E = C/Λs Λs = 1 �Z+ s �Z s 2 H

Kähler modulus:

Complexi�ed Kähler class [ω] 2 H2(E ,C) on E .
t = 1

2πi

R
E ω ω = ��πt

s2
dz ^ dz̄ t 2 H

Mirror symmetry:

Kähler modulus  ! complex modulus
Es ,t  ! Et ,s
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Embedding to projective space

Weierstrass }-function with period lattice Λτ = 1 �Z+ s �Z

}(z , s) =
1
z2
+ ∑
n2+m2 6=0

 
1

(z +m+ ns)2
� 1

(m+ ns)2

!

(∂z})
2 � 4}3 � g2}� g3 = 0

g2(s) = 4π4

3 E4(Q)
g3(s) = 8π6

27 E6(Q)
Q = e iπs

with the Eisenstein series and divisor power sums

E2k (Q) = 1� 2k
Bk ∑∞

n=1 σk�1(n)Qn σk�1(n) = ∑mjn m
k�1

Embedding to projective space (Weierstrass normal form)

C/Λs ! P2, z 7! (1 : }(z , s) : ∂z}(z , s))

Modular forms = C[E4,E6] � C[E2,E4,E6] = quasimodular forms.
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A-model: Hurwitz numbers

De�nition
Fix 2g � 2 distinct points B = fp1, ..., p2g�2g � E .

Covd ,g (E ,B) =
�
C ! E degree d simple branched at B
C irreducible genus g curve

�
/ �

(π : C ! E ) � (π0 : C 0 ! E ), 9φ : C!̃C 0 with π0 � φ = π.

De�nition
With Aut(π) = fφ : C!̃C j π � φ = πg de�ne

Ng ,d = ∑π2Covd ,g (E ,B )
1

#Aut(π)

In disconnected case C =
S
i Ci analogously dCovg ,d (E ,B) and N̂g ,d .

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 8 / 19



A-model: Hurwitz numbers

De�nition
Fix 2g � 2 distinct points B = fp1, ..., p2g�2g � E .

Covd ,g (E ,B) =
�
C ! E degree d simple branched at B
C irreducible genus g curve

�
/ �

(π : C ! E ) � (π0 : C 0 ! E ), 9φ : C!̃C 0 with π0 � φ = π.

De�nition
With Aut(π) = fφ : C!̃C j π � φ = πg de�ne

Ng ,d = ∑π2Covd ,g (E ,B )
1

#Aut(π)

In disconnected case C =
S
i Ci analogously dCovg ,d (E ,B) and N̂g ,d .

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 8 / 19



A-model: Hurwitz numbers

De�nition
Fix 2g � 2 distinct points B = fp1, ..., p2g�2g � E .

Covd ,g (E ,B) =
�
C ! E degree d simple branched at B
C irreducible genus g curve

�
/ �

(π : C ! E ) � (π0 : C 0 ! E ), 9φ : C!̃C 0 with π0 � φ = π.

De�nition
With Aut(π) = fφ : C!̃C j π � φ = πg de�ne

Ng ,d = ∑π2Covd ,g (E ,B )
1

#Aut(π)

In disconnected case C =
S
i Ci analogously dCovg ,d (E ,B) and N̂g ,d .

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 8 / 19



A-model: Hurwitz numbers

De�nition
Fix 2g � 2 distinct points B = fp1, ..., p2g�2g � E .

Covd ,g (E ,B) =
�
C ! E degree d simple branched at B
C irreducible genus g curve

�
/ �

(π : C ! E ) � (π0 : C 0 ! E ), 9φ : C!̃C 0 with π0 � φ = π.

De�nition
With Aut(π) = fφ : C!̃C j π � φ = πg de�ne

Ng ,d = ∑π2Covd ,g (E ,B )
1

#Aut(π)

In disconnected case C =
S
i Ci analogously dCovg ,d (E ,B) and N̂g ,d .

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 8 / 19



Computing Hurwitz numbers for any genus and degree

Fix p0 /2 B as basepoint. dCovg ,d (E ,B)0 =
�

π with marking of π�1(p0)
	

T̂g ,d =
�
(τ1, ..., τ2g�2, α, σ) j

τi transposition, α, σ 2 Sd
τi � ... � τ2g�2 � σ = α � σ � α�1

�

Monodromy map
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Computing Hurwitz numbers for any genus and degree

Lemma
StabSd (mon(π0)) �= Aut(π) where π0 7! π forgets the marking.

Lemma��T̂g ,d �� = ∑π2dCovg ,d (E ,B )
d !

StabSd (mon(π0)) = d ! � N̂g ,d (orbit-counting thm.)

De�nition

M(d) = (# fτ j τ [σ] � [σ0]g) [σ0],[σ]
2Cl(Sd )

M(3) =

0@0 1 0
3 0 3
0 2 0

1A 1+ 1+ 1
1+ 2
3

N̂g ,d = 1
d ! ∑σ2Sd #C (σ)| {z }

d !/#[σ]

�# f(τ1, . . . , τ2g�2) j τ1...τ2g�2σ 2 [σ]g

Theorem (Roth, Yui)

N̂g ,d = Tr
�
M(d)2g�2

�
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Generating functions

Encode the number of covers in a generating function

Fg (q) = ∑∞
d=1 Ng ,dq

d (disconnected F̂g (q))

For any degree and any genus

Z (q,λ) = ∑∞
g=1 ∑∞

d=1
Ng ,d

(2g�2)!q
dλ2g�2 (disconnected Ẑ (q,λ))

Lemma (Dijkgraaf)

Connected  ! disconnected: Z (q,λ) = e Ẑ (q,λ) � 1.

Ẑ (q,λ) = (q + 2q2 + 3q3 + 5q4 + ...) + (q2 + 9q3 + 40q4 + ...)
λ2

2 � 2

+ (q2 + 81q3 + 1312q4 + ...)
λ4

2 � 24 + ...

Z (q,λ) = (q +
3
2
q2 +

4
3
q3 +

7
4
q4 + ...) + (q2 + 8q3 + 30q4 + ...)

λ2

2 � 2

+ (q2 + 80q3 + 1224q4 + ...)
λ4

2 � 24 + ...
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Lemma (Dijkgraaf)

Connected  ! disconnected: Z (q,λ) = e Ẑ (q,λ) � 1.
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Conjugacy class basis vs representation basis

Center Hd � C[Sd ] has dimension part(d) and bases

Ω = fzc = ∑σ2c σ j c 2 Cl(Sd )g

∆ =
n
wχ =

dim χ
d ! ∑c χ(c�1)zc j χ 2 S^d

o
wχwχ0 =

�
wχ χ = χ0

0 otherwise

M(d) = MΩ
Ω (zτ�)t and M∆

∆ (zτ�) is diagonal with eigenvalues (d2)
χ(τ)
dim χ .

Theorem (Frobenius)

(d2)
χ(τ)
dim χ =

1
2

�
∑i u

2
i �∑i v

2
i

�
ui = # boxes in row i
vi = # boxes in column i

�
of diagonal split of χ

3,5

5,5

Theorem (Douglas)

Ẑ (q,λ) = �1+ coeffw 0 ∏
u2Z�0+ 1

2

�
1+ wque

u2
2 λ

�
∏

v2Z�0+ 1
2

�
1+ w�1qv e

�v2
2 λ

�
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Quasimodularity

As coe¢ cient of this generalized theta series,

Corollary (Kaneko, Zagier)
Fg is a quasimodular form of weight 6g � 6.

E 02 =
1
12

�
E4 � E 22

�
E 002 =

1
36

�
E6 � E 32 � 18E2E 02

�
C[E2,E4,E6] = C[E2,E 02,E

00
2 ]

Example

F2 = � 1
720 � (E2E 02 + E 002 ) F3 = 1

20736 � (7(E 02)3 + 3(E 002 )2)

Fg (eπit ) are symplectic invariants of E , depend on the Kähler moduli
parameter t of E (complex moduli parameter of E �).
Fg (eπit ) are (meromorphic limit of) a (non-homomorphic) section of
L
(2g�2) where L is the line bundle

ME � 3 t  H0(E �t ,KE �t )

and hence should be quasimodular.
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20736 � (7(E 02)3 + 3(E 002 )2)

Fg (eπit ) are symplectic invariants of E , depend on the Kähler moduli
parameter t of E (complex moduli parameter of E �).
Fg (eπit ) are (meromorphic limit of) a (non-homomorphic) section of
L
(2g�2) where L is the line bundle

ME � 3 t  H0(E �t ,KE �t )

and hence should be quasimodular.
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Tropical Hurwitz numbers

De�nition

Branch map brtrop : M trop
g (S1, d) ! (S1)2g�2

(π : Γ! S1) 7! (π(p1), ...,π(p2g�2))

Tropical Hurwitz numbers H tropd ,g = deg(brtrop)

Leads to combinatorial rule (or de�nition):

Theorem

H tropg ,d = ∑Γ mult(Γ) where Γ is genus g, weighted, balanced, trivalent
graph with d : 1 map to S1 and 2g � 2 branch points with cyclic labelling.
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Tropical Hurwitz numbers �multiplicity

g(Γ) � 2
mult(Γ) = 1

#Aut(Γ) ∏
e2e(Γ)

w(e) mult 1

1

1
1

K k

= 1
k

Theorem

H tropg ,d = Ng ,d and Ĥ
trop
g ,d = N̂g ,d by correspondence of curves.

General result: Bertrand, Brugallé, Mikhalkin. More suitable here, proof
similar to P1 case Cavalieri, Johnson, Markwig.
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Tropical Hurwitz numbers �Example

N̂3,3 =?

2� 4� 4�

mult(Γ) = 22 � 32 = 36 mult(Γ) = 22 � 3 = 12 mult(Γ) = 22 � 3 = 6

4� 2� 2�

mult(Γ) = 1
2 � 2 � 2 = 2 mult(Γ) = 22 = 4 mult(Γ) = 1

2
1
22
2 = 1
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Tropical Hurwitz numbers �Example

N̂3,3 = 162

2� 4� 4�

mult(Γ) = 22 � 32 = 36 mult(Γ) = 22 � 3 = 12 mult(Γ) = 22 � 3 = 6

4� 2� 2�

mult(Γ) = 1
2 � 2 � 2 = 2 mult(Γ) = 22 = 4 mult(Γ) = 1

2
1
22
2 = 1
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Tropical computation of �ner invariants

Theorem�
M(d)2g�2

�
[σ],[σ]

= ∑Γ with partition [σ] over p1p2 mult(Γ)

Example

M(3)2�3�2 =

0@0 1 0
3 0 3
0 2 0

1A4

=

0@27 0 27
0 81 0
54 0 54

1A 1+ 1+ 1
1+ 2
3

Tr = 162
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B-model: Feynman integrals

Basic idea: Count constant maps f : C ! E �.

If g(C ) = 0 always

P1
f7�! fpg � E �, if g(C ) > 0 then C may degenerate into union of

3-punctured P1, then P1 [ ...[P1
f7�! fp1, ..., prg � E �.

Such a degenerate curve is a trivalent Feynman graph on E � with 2g � 2
vertices and 3g � 3 edges, that is,

a tropical curve Γ with a map π : Γ! E �

such that the image is a cycle homotopy equivalent to [0, 1] and avoids
the singularities of the lattice periodic propagator

P(z) =

(
1
4π2
}(q, z) + 1

12E2(q) if z 6= 0
1
12E2(q) if z = 0

Fg = ∑
Γ

1
#Aut(Γ)

Z
z1

dz1...
Z
z2g�2

dz2g�2 ∏
fv ,w g2e(Γ)

P(πz (w)� πz (v))

where πz varies over all positions zi of branch points.
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Feynman integrals

Example (Genus 2)

Z
z2

dz2P(z2 � z1)3

= � 1
64π6

Z
z2

dz2}3 � E2
64π4

Z
z2

dz2}2 � E 22
192π2

Z
z2

dz2}� E 32
1728

= 4320 � (�4E6 � 6E4E2 + 10E 32 ) = #Aut(Γ) � F2(q)

Z
z2

dz2P(z2 � z1)P(0)2 =
� 1
12E2(q)

�2 Z
z2

dz2P(z2)| {z }
0

This matches nicely tropical geometry: The second graph does not lead to
tropical covers, since the weight 0 edge would be contracted.

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 19 / 19



Feynman integrals

Example (Genus 2)Z
z2

dz2P(z2 � z1)3

= � 1
64π6

Z
z2

dz2}3 � E2
64π4

Z
z2

dz2}2 � E 22
192π2

Z
z2

dz2}� E 32
1728

= 4320 � (�4E6 � 6E4E2 + 10E 32 ) = #Aut(Γ) � F2(q)

Z
z2

dz2P(z2 � z1)P(0)2 =
� 1
12E2(q)

�2 Z
z2

dz2P(z2)| {z }
0

This matches nicely tropical geometry: The second graph does not lead to
tropical covers, since the weight 0 edge would be contracted.

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 19 / 19



Feynman integrals

Example (Genus 2)Z
z2

dz2P(z2 � z1)3

= � 1
64π6

Z
z2

dz2}3 � E2
64π4

Z
z2

dz2}2 � E 22
192π2

Z
z2

dz2}� E 32
1728

= 4320 � (�4E6 � 6E4E2 + 10E 32 ) = #Aut(Γ) � F2(q)

Z
z2

dz2P(z2 � z1)P(0)2 =
� 1
12E2(q)

�2 Z
z2

dz2P(z2)| {z }
0

This matches nicely tropical geometry: The second graph does not lead to
tropical covers, since the weight 0 edge would be contracted.

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 19 / 19



Feynman integrals

Example (Genus 2)Z
z2

dz2P(z2 � z1)3

= � 1
64π6

Z
z2

dz2}3 � E2
64π4

Z
z2

dz2}2 � E 22
192π2

Z
z2

dz2}� E 32
1728

= 4320 � (�4E6 � 6E4E2 + 10E 32 ) = #Aut(Γ) � F2(q)

Z
z2

dz2P(z2 � z1)P(0)2 =
� 1
12E2(q)

�2 Z
z2

dz2P(z2)| {z }
0

This matches nicely tropical geometry: The second graph does not lead to
tropical covers, since the weight 0 edge would be contracted.

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 19 / 19



Feynman integrals

Example (Genus 2)Z
z2

dz2P(z2 � z1)3

= � 1
64π6

Z
z2

dz2}3 � E2
64π4

Z
z2

dz2}2 � E 22
192π2

Z
z2

dz2}� E 32
1728

= 4320 � (�4E6 � 6E4E2 + 10E 32 ) = #Aut(Γ) � F2(q)

Z
z2

dz2P(z2 � z1)P(0)2 =
� 1
12E2(q)

�2 Z
z2

dz2P(z2)| {z }
0

This matches nicely tropical geometry: The second graph does not lead to
tropical covers, since the weight 0 edge would be contracted.

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 19 / 19



Feynman integrals

Example (Genus 2)Z
z2

dz2P(z2 � z1)3

= � 1
64π6

Z
z2

dz2}3 � E2
64π4

Z
z2

dz2}2 � E 22
192π2

Z
z2

dz2}� E 32
1728

= 4320 � (�4E6 � 6E4E2 + 10E 32 ) = #Aut(Γ) � F2(q)

Z
z2

dz2P(z2 � z1)P(0)2 =
� 1
12E2(q)

�2 Z
z2

dz2P(z2)| {z }
0

This matches nicely tropical geometry: The second graph does not lead to
tropical covers, since the weight 0 edge would be contracted.

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 19 / 19



Feynman integrals

Example (Genus 2)Z
z2

dz2P(z2 � z1)3

= � 1
64π6

Z
z2

dz2}3 � E2
64π4

Z
z2

dz2}2 � E 22
192π2

Z
z2

dz2}� E 32
1728

= 4320 � (�4E6 � 6E4E2 + 10E 32 ) = #Aut(Γ) � F2(q)

Z
z2

dz2P(z2 � z1)P(0)2 =
� 1
12E2(q)

�2 Z
z2

dz2P(z2)| {z }
0

This matches nicely tropical geometry: The second graph does not lead to
tropical covers, since the weight 0 edge would be contracted.

Janko Boehm (TU-KL) Tropical higher genus mirror symmetry 19 September 2012 19 / 19


	Towards a tropical interpretation of higher genus mirror symmetry
	Calabi-Yau varieties and mirror symmetry
	Degenerations
	Tropical mirror correspondence
	Mirror symmetry for the elliptic curve
	Embedding to projective space
	A-model: Hurwitz numbers
	Computing Hurwitz numbers for any genus and degree
	Generating functions
	Conjugacy class basis vs representation basis
	Quasimodularity
	Tropical Hurwitz numbers
	Tropical Hurwitz numbers - multiplicity
	Tropical Hurwitz numbers -- Example
	Tropical computation of finer invariants
	B-model: Feynman integrals
	Feynman integrals


