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Mirror symmetry

For Calabi-Yau variety X (elliptic curve, quintic in P4,...) and g ∈N0 :

X

∑∞
d=1Ng ,d · qd = Ag (q)

X ∗

Bg (Q)

Ng ,d = Gromov-Witten invariants Integrals on M(X ∗)

Intersection numbers on moduli

space of stable maps Mg ,n(X , d)
???

A-model B-model

mirror construction

Q=Q(q)

Mirror constructions: Greene-Plesser ’90, Batyrev ’93,...
String theory: Candelas-Horowitz-Strominger-Witten ’85, Candelas-
de la Ossa-Green-Parkes ’91,...
Algebraic/symplectic geometry: Fulton-Pandharipande ’95,
Kontsevich ’95, Behrend-Fantechi ’97,...
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Mirror theorems

Theorem (Givental ’96, Lian-Liu-Yau ’97, Gathmann ’03)

A0 = B0 for quintic hypersurface in P4.

⇒ A0(q) = 23 · 53 + (4874 · 53 + 23·53
23

) · q + (2537651 · 53 + 23·53
33

) · q2 + ...

Is enumerative geometry result on X : number of lines, conics, cubics,...
(number of genus 0 curves on X of degree d , delicate counting).

Similar theorems for g = 0, 1 in case of degree n+ 1 hypersurfaces in Pn

(Klemm-Pandharipande ’07, Zinger ’07)

Questions:

Mirror theorems for other Calabi-Yau varieties and g ≥ 2?

Geometric understanding of mirror theorem beyond combinatorics?

What are the B-model integrals?
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Elliptic curves

Start with easiest Calabi-Yau: elliptic curve E (e.g. smooth plane cubic).

Definition (Hurwitz numbers)

Nd ,g = 1
|Aut(f )| -weighted number of degree d covers f : C → E , where C

is smooth of genus g and f has 2g − 2 simple ramifications points.

according to Riemann-Hurwitz formula 2g(C )− 2 = d · (2g(E )− 2) + ∑P∈C (e(P)− 1)

Nd ,0 = 0, so have to look at g ≥ 1 invariants!

Hurwitz numbers are the Gromov-Witten invariants in A-model:

Theorem (special case of Okounkov-Pandharipande ’06)

Ng ,d =
∫
[Mg ,2g−2(E ,d)]

ψ1 ev∗1(x1) · ... · ψ2g−2 ev∗2g−2(p2g−2)

with Psi-classes ψi = chtop

(
Ω1

C ,xi
7→ (C , x1, ..., x2g−2, f )

)
.
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Tropical point of view

How to understand all Ng ,d? Pass to tropical geometry:

E 7→ trop(E )

Gromov-Witten invariants B-model

tropical Gromov-Witten invariants

Correspondence Theorem

Mirror Theorem

Tropical Mirror Theorem

For X = P2 (building block of C-Y) and g = 0:

tropical mirror theorem (Gross ’10)
partial correspondence theorem (Markwig-Rau ’09)
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Our results

Hurwitz

numbers

Univariate B as

Feynman integral

Multivariate B as

Feynman integral

tropical Hurwitz numbers

Correspondence
Theorem

⇐

numbers of labeled tropical covers

Refined Tropical
Mirror Theorem

Correspondence theorem for all g and d .
Tropical mirror theorem for all g as corollary to
refined tropical mirror theorem for each trivalent connected graph of
genus g and branch type.

Why?

Geometric insight into Feynman integrals.
Computationally accessible.
Can be generalized.
Implications in number theory: refined generating functions are
quasi-modular.
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Feynman integrals (B-side)

Definition

A Feynman graph is a 3-valent, connected graph Γ of genus g .

By g(Γ) = 1− |vert(Γ)|+ |edges(Γ)| and 3 |vert(Γ)| = 2 |edges(Γ)|

|vert(Γ)| = 2g − 2 |edges(Γ)| = 3g − 3

Fix labeling zi for vertices and qi for edges.

Example

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1
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Feynman integrals (B-side)

Definition (Propagator)

P(z , q) = − 1

4π2
℘(z , q)− 1

12
E2(q) for z ∈ E = C/Λ

with Weierstraß-℘-function ℘ = 1
z2

+ ... and the Eisenstein series

E2 = 1− 24 ∑∞
d=1 σ1(d)q

2d = 1− 24q2 − 72q4 − ... σ1(d) = ∑m|d m

Definition (Feynman integral)

For ordering Ω ∈ S2g−2 of integration paths on E

IΓ,Ω =
∫

γ2g−2
...
∫

γ1

(
∏

e∈edges(Γ)
Pk(z

+
e − z−e , q)

)
dzΩ(1)...dzΩ(2g−2)
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z2

+ ... and the Eisenstein series

E2 = 1− 24 ∑∞
d=1 σ1(d)q

2d = 1− 24q2 − 72q4 − ... σ1(d) = ∑m|d m

Definition (Feynman integral)

For ordering Ω ∈ S2g−2 of integration paths on E

IΓ,Ω =
∫

γ2g−2
...
∫

γ1

(
∏

e∈edges(Γ)
Pk(z

+
e − z−e , q)

)
dzΩ(1)...dzΩ(2g−2)
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Mirror symmetry for elliptic curves

Example

For

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

we have to integrate

P(z1 − z2, q)2 · P(z1 − z3, q) · P(z2 − z4, q) · P(z3 − z4, q)2

Theorem (Dijkgraaf ’96)

For g > 1

∑
d

Ng ,d q2d = ∑
g (Γ)=g

1

|Aut(Γ)|∑Ω
IΓ,Ω(q)
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Tropical Hurwitz numbers (A-side)

Definition (Tropical Hurwitz number)

Ntrop
d ,g = weighted number of tropical covers π : C → E where

π has degree d ,

C is a tropical curve (metric 3-valent graph) of genus g ,

has 2g − 2 simple ramifications (3-valent vertices) at fixed points
p1, ..., p2g−2 ∈ E ,

with multiplicity mult(π) =
1

|Aut(π)| · ∏
e∈edges(C )

w(e)

Tropical covers are balanced w.r.t. weights w(e):
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Correspondence Theorem

As a direct generalization of (Cavalieri-Johnson-Markwig ’10) and
(Bertrand-Brugallé-Mikhalkin ’11) obtain correspondence theorem:

Theorem (BBBM ’13)

Nd ,g = Ntrop
d ,g by correspondence of tropical and algebraic covers.
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Tropical Hurwitz numbers – Example

Ntrop
3,3 = ?

Two trivalent, connected combinatorial types (non-metric graphs)

of genus g = 3 with

2g − 2 = 4 vertices
3g − 3 = 6 edges
no bridges (weight 0 edges would be contracted):
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Tropical Hurwitz numbers – Example

Ntrop
3,3 =

2· 4· 4·

mult(π) = 22 · 32 = 36 mult(π) = 1
2 · 22 · 3 = 6 mult(π) = 22 · 3 = 12

4· 2·

mult(π) = 1
2 · 2 · 2 = 2 mult(π) = 22 = 4
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Tropical Hurwitz numbers – Example

Ntrop
3,3 = 112 + 48 = 160
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Labeled tropical covers (refined A-side)

Fix a base point p0 ∈ E .
Let Γ be a Feynman graph, a = (a1, ..., a3g−3) ∈N3g−3, and Ω ∈ S2g−2.

Definition

Ntrop
a,Γ,Ω = weighted number of labeled tropical covers π : C → E such that

ak is number of points in π−1(p0) ∩ qk

π has 2g − 2 simple ramifications (3-valent vertices) at fixed points
p1, ..., p2g−2 ∈ E ,

C is a tropical curve of combinatorial type Γ,

π(xΩ(i)) = pi

counted with multiplicity

mult(π) = ∏
e∈edges(C )

w(e)
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Example

a = (0, 1, 1, 0, 1, 0) Γ =

Ω =

(
1 2 3 4
1 3 4 2

)

Ntrop
a,Γ,Ω = 4 + 12 = 16
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Example

a = (0, 1, 1, 0, 1, 0) Γ = Ω =

(
1 2 3 4
2 4 3 1

)

Ntrop
a,Γ,Ω = 4 + 12 = 16
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Refined Feynman integrals

Definition (Refined Feynman integrals)

IΓ,Ω(q1, ..., q3g−3) =
∫

γ2g−2
...
∫

γ1

(
3g−3

∏
k=1

Pk (z
+
k − z−k , qk )

)
dzΩ(1)...dzΩ(2g−2)

Example

For

q2 q3 q5 q6

z2 q4 z4

z1 z3
q1

we have to integrate

P(z1− z2, q1) ·P(z1− z2, q2) ·P(z1− z3, q3) ·P(z2− z4, q4) ·P(z3− z4, q5) ·P(z3− z4, q6)
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Tropical mirror theorem

Theorem (Multivariate tropical mirror theorem, BBBM ’13)

∑
a

Ntrop
a,Γ,Ω q2a = IΓ,Ω(q1, ..., q3g−3)

Setting qi = q we get:

Corollary (Tropical mirror theorem)

∑
d

Ntrop
d ,g q2d = ∑

Γ

1

|Aut(Γ)|∑Ω
IΓ,Ω(q)

Together with the correspondence theorem this proves:

Corollary (Mirror symmetry for elliptic curves)

For elliptic curves Ag = Bg for all g .
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Computing Feynman integrals

By coordinate change xk = exp(iπzk),

path γk becomes circle around 0,
integral becomes residue, difference becomes quotient, derivative of inverse
function yields factor 1

xk
, propagator becomes:

Theorem (BBBM ’13)

P(x , q) =
∞

∑
w=1

w x2w +
∞

∑
a=1

∑
w |a

w(x2w + x−2w )q2a

Define

Pa(x , y , q) =

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy )2w
for a > 0

Corollary

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k , qk)
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integral becomes residue, difference becomes quotient, derivative of inverse
function yields factor 1

xk
, propagator becomes:

Theorem (BBBM ’13)

P(x , q) =
∞

∑
w=1

w x2w +
∞

∑
a=1

∑
w |a

w(x2w + x−2w )q2a

Define

Pa(x , y , q) =

{
x2y2

(x2−y2)2
for a = 0

∑w |a w
x4w+y4w

(xy )2w
for a > 0

Corollary

Ntrop
a,Γ,Ω = constxΩ(2g−2) ... constxΩ(1)

3g−3

∏
k=1

Pak (x
+
k , x−k , qk)
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Implementation of Feynman integrals in Singular

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> LIB "ellipticcovers.lib";

> graph Gamma = makeGraph(list(1,2,3,4),

list(list(1,3),list(1,2),list(1,2),list(2,4),list(3,4),list(3,4)));

> Gamma;

[[1, 3], [1, 2], [1, 2], [2, 4], [3, 4], [3, 4]]

Graph with 4 vertices and 6 edges

> ring R = (0,x(1..4)),q(1..6),dp;

> gromovWitten (Gamma,list(0,1,1,0,1,0));

32

> generatingFunction (Gamma,2);

8*q(1)^2+8*q(2)*q(3)+8*q(4)^2+8*q(5)*q(6)
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Quasi-modularity

Corollary (BBBM ’13, generalization of Kaneko-Zagier ’95)

For all Feynman graphs Γ of genus g and all orders Ω the function IΓ,Ω is
a quasi-modular form (IΓ,Ω ∈ Q[E2,E4,E6]) of weight 6g − 6.

Eisenstein series E2k = 1− 2k
Bk ∑∞

n=1
σk−1(n)q

2n σk−1(n) = ∑m|n m
k−1

E4 = 1 + 240q2 + 2160q4 + ... E6 = 1− 504q2 − 16632q4 − ...

Example

For Γ = Singular gives

IΓ = 32q4 + 1792q6 + 25344q8 + 182272q10 + 886656q12 +O(q14)

hence, by quasi-modularity,

IΓ =
16

1492992

(
4E2

6 + 4E3
4 − 12E2E4E6 − 3E2

2E
2
4 + 4E3

2E6 + 6E4
2E4 − 3E6

2

)
.

⇒ Can compute IΓ(q) fast up to arbitrary high order.
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