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Algebraic Varieties

Let K be a field. An affine algebraic variety is the common zero-set

V (f1, ..., fr ) = {p ∈ Kn | f1(p) = 0, ..., fr (p) = 0}

of polynomials f1, ..., fr ∈ K [x1, ..., xn].

Example

V (1) = ∅, V (0) = Kn,

the set of solutions of a linear system of equations

A · x − b = 0

the graph
Γ(g) = V (x2 · b(x1)− a(x1)) ⊂ K 2

of a rational function
g =

a

b
∈ K (x1)
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Examples of Varieties: Graphs

The graph of g(x1) =
x31−1
x1

is

V (x2x1 − x31 + 1) ⊂ K 2

——————————————————————————————–
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Examples of Varieties: Curves

Not every curve in K 2 is a graph, e.g., the elliptic curve

V (x22 − x31 − x21 + 2x1 − 1)

——————————————————————————————–
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Examples of Varieties: Curves

Elliptic curves come with a group structure. They play an important role
in Number Theory and Cryptography (e.g. Diffie-Hellman key exchange).

——————————————————————————————–
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Examples of Varieties: Surfaces

There are also varieties of higher dimension, e.g., Whitney’s umbrella

V (y2 − x2z)

——————————————————————————————–

It is the union of infinitely many lines.
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Examples of Varieties: Cubic Surfaces

Theorem (Cayley, 1848)

Any projective smooth cubic surface over C contains exactly 27 lines.

The Clebsch Cubic [Clebsch, 1871] has 27 real lines:
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Examples of Varieties: Splines

The cubic spline C ⊂ K 2 parametrized by

x1(t) = p0(1− t)3 + 3p1t(1− t)2 + 3p2t
2(1− t) + p3t

3

x2(t) = q0(1− t)3 + 3q1t(1− t)2 + 3q2t
2(1− t) + q3t

3

with t ∈ [0, 1] passes through the points (p0, q0) , (p3, q3) ∈ K 2 and the
tangents at these points through (p1, q1) and (p2, q2).

The curve sector C is a sub-

set of an algebraic curve C .

C is the closure of C in the
Zariski Topology, which has
as closed sets the algebraic
varieties.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 7 / 29



Examples of Varieties: Splines

The cubic spline C ⊂ K 2 parametrized by

x1(t) = p0(1− t)3 + 3p1t(1− t)2 + 3p2t
2(1− t) + p3t

3

x2(t) = q0(1− t)3 + 3q1t(1− t)2 + 3q2t
2(1− t) + q3t

3

with t ∈ [0, 1] passes through the points (p0, q0) , (p3, q3) ∈ K 2 and the
tangents at these points through (p1, q1) and (p2, q2).

The curve sector C is a sub-

set of an algebraic curve C .

C is the closure of C in the
Zariski Topology, which has
as closed sets the algebraic
varieties.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 7 / 29



Examples of Varieties: Splines

The cubic spline C ⊂ K 2 parametrized by

x1(t) = p0(1− t)3 + 3p1t(1− t)2 + 3p2t
2(1− t) + p3t

3

x2(t) = q0(1− t)3 + 3q1t(1− t)2 + 3q2t
2(1− t) + q3t

3

with t ∈ [0, 1] passes through the points (p0, q0) , (p3, q3) ∈ K 2 and the
tangents at these points through (p1, q1) and (p2, q2).

The curve sector C is a sub-

set of an algebraic curve C .

C is the closure of C in the
Zariski Topology, which has
as closed sets the algebraic
varieties.

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 7 / 29



Projections

By projecting a smooth curve in K 3 (here the so called twisteted cubic)
one may obtain a singular curve:

V (y − x2, z − x3)

−→
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Ideals and Varieties

The affine variety V (f1, ..., fr ) only depends on the ideal

I = 〈f1, ..., fr 〉 ⊂ R = K [x1, ..., xn]

generated by the fi : If f1(p) = 0, ..., fr (p) = 0, then(
r

∑
i=1

si · fi

)
(p) =

r

∑
i=1

si (p)fi (p) = 0

for all si ∈ R.

Hence, we define for an ideal I ⊂ R

V (I ) = {p ∈ Kn | f (p) = 0 ∀f ∈ I}

——————————————————————————————–
This is indeed an algebraic variety: A ring is called Noetherian if every
ideal is finitely generated.

Theorem (Hilbert’s basis theorem, 1890)

If R is a Noetherian ring, then R [x ] is also Noetherian.
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Ideals and Varieties

A variety V (I ) ⊂ Kn is called irreducible, if it does not have a non-trivial
decomposition

V (I ) = V (J1) ∪ V (J2)

For a subset S ⊂ Kn define the vanishing ideal

I (S) = {f ∈ R | f (p) = 0 ∀p ∈ S}

Theorem

If K is algebraically closed then

{prime ideals of R}
V
�
I
{irrreducible affine varieties in Kn}

is a bijection.
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Projection and Elimination

Gaussian elimination parametrizes the solution set L of a linear system of
equations. It computes a bijective projection L→ K r . In the case of
non-linear systems we can proceed in a similar way:

For an ideal I ⊂ R = K [x1, ..., xn] consider the elimination ideal

Im = I ∩K [xm+1, ..., xn]

and the projection

πm : Kn → Kn−m

πm(a1, ..., an) = (am+1, ..., an)

Theorem

πm(V (I )) = V (Im)

How to compute Im?
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Division with Remainder

For an ideal I = 〈f1, ..., fr 〉 in the Euclidean domain (and hence PID) K [x ],
the Euclidean algorithm computes a generator of I = 〈ggT (f1, ..., fr )〉.
Using division with remainder (successively removing the term of highest
degree), we can test whether f ∈ K [x ] is in I .

For f ∈ R = K [x1, ..., xn] one has to choose a lead term LT(f ), e.g., by
ordering the terms lexicographically w.r.t x1 > ... > xn.
Example

We divide x2y + xy2 + y2 by xy − 1 and y2 − 1 for x > y :

x2y + xy2 + y2 = x (xy − 1) + y (xy − 1) + x + 1
(
y2 − 1

)
+ y + 1

x2y − x
xy2 + x + y2

xy2 − y
x + y2 + y
y2 + y
y2 − 1
y + 1
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Gröbner Bases

We divide x2 − y2 by x2 + y and xy + x

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

This is strange! We have

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x)

hence x2 − y2 ∈ I =
〈
x2 + y , xy + x

〉
, but the remainder is not zero.

Problem: Lead terms cancel.
Solution: Add to the divisors all elements of I which can be obtained by
cancelling lead terms and reducing by the ones we already have. This is
Buchberger’s algorithm [Buchberger, 1976], the basis of computational
commutative algebra, and the result is called a Gröbner basis of I .
Gröbner basis in the example: G =

{
y2 + y , x2 + y , xy + x

}
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Gröbner Bases

We divide x2 − y2 by x2 + y and xy + x

x2 − y2 = 1 ·
(
x2 + y

)
+
(
−y2 − y

)
x2 + y
−y2 − y

This is strange! We have

x2 − y2 = −y
(
x2 + y

)
+ x (xy + x)

hence x2 − y2 ∈ I =
〈
x2 + y , xy + x

〉
, but the remainder is not zero.

Problem: Lead terms cancel.
Solution: Add to the divisors all elements of I which can be obtained by
cancelling lead terms and reducing by the ones we already have. This is
Buchberger’s algorithm [Buchberger, 1976], the basis of computational
commutative algebra, and the result is called a Gröbner basis of I .
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Gröbner Bases and Ideal Membership in Singular

Theorem

If G is a Gröbner basis of I ⊂ R and f ∈ R, then f ∈ I iff NF(f ,G ) = 0.

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^2 - y^2, x^2 + y;

> I = std(I);

> I;

[1] = y2+y

[2] = xy+x

[3] = x2+y

> NF(x^2-y^2,I);

0
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Gröbner Bases and Projection

Theorem

If G = {g1, ..., gr} is a lexicographical Gröbner basis of I ⊂ K [x1, ..., xn],
then

Gm = G ∩K [xm+1, ..., xn]

is a lexicographical Gröbner basis of Im ⊂ K [xm+1, ..., xn].

Using projections, we can compute the image of V (I ) under a rational
map ϕ = (ϕ1, ..., ϕr ) with ϕi ∈ K (x1, ..., xn) by projecting the graph

Γ(ϕ) = {(x , ϕ(x)) | x ∈ V (I )} ⊂ Kn ×K r

π1 ↙ ↘π2

V (I ) 99K K r
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is a lexicographical Gröbner basis of Im ⊂ K [xm+1, ..., xn].

Using projections, we can compute the image of V (I ) under a rational
map ϕ = (ϕ1, ..., ϕr ) with ϕi ∈ K (x1, ..., xn) by projecting the graph

Γ(ϕ) = {(x , ϕ(x)) | x ∈ V (I )} ⊂ Kn ×K r

π1 ↙ ↘π2

V (I ) 99K K r

Janko Boehm (TU-KL) Algorithms for Normalization 14.10.2014 15 / 29



Desingularization of Curves

Given a singular curve, find smooth curve C ′ which is birational to C .

C = V (x3 + x2 − y2)

The coordinate ring of C (i.e. ring of functions on C ) is the quotient ring

A = K [x , y ]/I where I =
〈
x3 + x2 − y2

〉
.

Suppose C ′ is another affine variety with coordinate ring A′.

Definition

C and C ′ are called birational if Q(A) ∼= Q(A′).

Equivalently: There is a rational map C 99K C ′ defined on a Zariski open
subset of C which admits an inverse rational map.
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Desingularization of Curves

Example

C = V (x3 + x2 − y2)
ϕ−→ K 1, (x , y) 7−→ t =

y

x

I (Γ (ϕ)) = 〈x3 + x2 − y2, x · t − y ,
⇒x 6=0

w · x − 1〉 ⊂ K [w , x , y , t]

Elimination with w > x > y > t :

x3 + x2 − y2 w
xt − y −w wy −wt
wx − 1 t x2 − x 1

−wy + t 1 xt t
−wy2 + x2 + x 1 −1
−x2 + xt2 − x 1 w
−x + t2 − 1 1

...

K 1 ϕ−1−→ C
t 7−→

(
t2 − 1, t3 − t

)
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Normalization

Definition

Let A be a Noetherian domain. The normalization A of A is the integral
closure of A in its quotient field Q(A).

We call A normal if A = A.

Setup: Affine algebra A = K [x1, . . . , xn]/I where I ⊂ K [x1, ..., xn] is ideal.

Theorem (Noether)

A is a finitely generated A-module.

Example

For C = V (I ) where I =
〈
x3 + x2 − y2

〉
⊂ K [x , y ]

A = K [x , y ]/I ∼= K [t2 − 1, t3 − t] ⊂ K [t] ∼= A
x 7→ t2 − 1
y 7→ t3 − t

Since K [t] is factorial (UFD) it is normal. As an A-module A =
〈

1, y
x

〉
.
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Example

Theorem

Any factorial ring is normal.

Proof.

Let A be factorial and r
s ∈ Q(A) integral over A. Then there are ai ∈ A

with ( r
s

)n
=

n−1
∑
i=0

ai

( r
s

)i
,

and, cancelling the denominator,

rn = s

(
n−1
∑
i=0

ai r
i sn−1−i

)
.

So if p is a prime divisor of s, then also of r , which implies that r
s ∈ A.
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Key Lemma

Definition

For ideals Ij ⊂ A the ideal quotient is (I1 :A I2) = {b ∈ A | bI2 ⊂ I1}

.

Algorithm (Ideal quotients by Elimination)

I : 〈g1, g2〉 = (I : g1) ∩ (I : g2)
I ∩ 〈g〉 = 〈g · f1, ..., g · fs〉 =⇒ I : 〈g〉 = 〈f1, ..., fs〉
I , J ⊂ R =⇒ I ∩ J = (t · I + (1− t) · J) ∩ R

Lemma

If J ⊂ A is an ideal and 0 6= g ∈ J, then

A ↪→ HomA(J, J) ∼= 1
g (gJ :A J) ⊂ A

a 7→ a·
ϕ 7→ ϕ(g )

g
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Key Lemma

Proof.

Let J = 〈g1, . . . , gs〉 and b ∈ (gJ :A J).

By

bJ ⊂ gJ

there are bij ∈ 〈g〉 with
bgj = ∑i

bijgi .

By Cayley-Hamilton, b· is a zero of χ(t) = det(t · E − (bij )), so there are

ai ∈ 〈g〉i with
s

∑
i=0

aib
s−i = 0 and a0 = 1

hence
s

∑
i=0

ai
g i

(
b

g

)s−i
= 0 with

ai
g i
∈ A.
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Non-normal and singular locus

For simplicity, assume V (I ) is curve. Then the non-normal locus N(A) is
equal to the singular locus Sing(A).

In general, N(A) ⊂ Sing(A).

Definition

For an ideal I = 〈f1, ..., fs〉 ⊂ K [x1, ..., xn], the Jacobian ideal Jac(I ) is
generated by the c × c minors of the Jacobian matrix

∂f1
∂x1

· · · ∂f1
∂xn

...
...

∂fs
∂x1

· · · ∂fs
∂xn


where c = n− dim(X ) is the codimension of X = V (I ). Then

Sing(A) = V (Jac(I ) + I ).

Example

For I =
〈
x4 + x5 − y2

〉
we have Jac(I ) + I =
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Grauert-Remmert Criterion

Definition

The radical of an ideal I ⊂ A is
√
I = {f ∈ A | ∃a ∈N with f a ∈ I}

Example√
〈x3, y〉 = 〈x , y〉.

Theorem (Grauert-Remmert)

Let 0 6= J ⊂ A = K [x1, ..., xn]/I be an ideal with J =
√
J and

N(A) ⊂ V (J).

Then A is normal iff the inclusion

A ↪→ HomA(J, J)
a 7→ (b 7→ ab)

is an isomorphism.
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Normalization Algorithm

If A is not normal, then for J =
√

Jac(I ) + I by Grauert-Remmert

A $ HomA(J, J) ∼=
1

g
(gJ :A J) ⊂ A ⊂ Q(A).

This gives algorithm [de Jong, 98], [Greuel, Laplagne, Seelisch, 2010]:

Algorithm

Starting from A0 = A and J0 = J, setting

Ai+1 =
1
g (gJi :Ai

Ji ) Ji =
√
JAi

we get a chain of extensions of reduced Noetherian rings

A = A0 ⊂ · · · ⊂ Ai ⊂ · · · ⊂ Am = Am+1 = A.

Terminates since A is Noetherian. By Grauert-Remmert Am = A, using:

Lemma

N(Ai ) ⊂ V (Ji )
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Normalization Algorithm

Example

For I =
〈
x4 + x5 − y2

〉

the first step yields

A1 =
1

x
(xJ : x) =

1

x
〈x , y〉 =A

〈
1,

y

x

〉
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Normalization Algorithm

To obtain A, one more iteration is needed, leading to A2 =A

〈
1, y

x2

〉
:

Example

SINGULAR / Development

A Computer Algebra System for Polynomial Computations / version 4

0<
by: W. Decker, G.-M. Greuel, G. Pfister, H. Schoenemann \ Dec 2013

FB Mathematik der Universitaet, D-67653 Kaiserslautern \

> ring R = 0,(x,y),lp;

> ideal I = x^4 - y^2 + x^5;

> LIB "normal.lib";

> list nor = normal(I,"var1");

> nor[2];

[1]:

[1] = y

[2] = x2
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Desingularization of Curves by Normalization

C = V (x4 − y2 + x5)

t =
y

x2
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Local Techniques for Normalization

Similarly to the prime factorization of integers, any ideal J ⊂ K [x1, . . . , xn]
has a primary decomposition as an intersection

J = P1 ∩ . . . ∩ Pr

of primary ideals Pi

(i.e. ab ∈ Pi ⇒ a ∈ Pi or ∃m : bm ∈ Pi ). If J =
√
J

then the Pi are prime.
For simplicity assume again that V (I ) is a curve.

Theorem (BDLSS, 2013)

Suppose

J =
√

Jac(I ) + I = P1 ∩ . . . ∩ Pr

with prime ideals Pi , and A ⊂ Bi ⊂ A is the ring given by the
normalization algorithm applied to Pi instead of J, then

A = B1 + . . . + Br
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Local Techniques for Normalization

Example

For I = 〈x4 + y2(y − 1)3〉

we have
J = 〈x , y〉 ∩ 〈x , y − 1〉

and A = B1 + B2 with

B1 =
〈

1, x2

y , x4

y2

〉
B2 =

〈
1, x2

y−1 , x3

(y−1)2
〉
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