Decomposition of Semigroup Algebras

Janko Boehm joint work with David Eisenbud, Max Nitsche

Technische Universität Kaiserslautern

20 March 2013

For abelian semigroup *B* the **semigroup ring** R[B] is the free *R*-module with basis t^b for $b \in B$, and multiplication defined by the *R*-bilinear extension of $t^a \cdot t^b = t^{a+b}$.

For abelian semigroup *B* the **semigroup ring** R[B] is the free *R*-module with basis t^b for $b \in B$, and multiplication defined by the *R*-bilinear extension of $t^a \cdot t^b = t^{a+b}$.

Example

$$B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3 \quad K \text{ field}$$

$$K[B] = K[t_1^2 t_3^3, t_1^4 t_3, t_2^2 t_3^3, t_1 t_2^3 t_3, t_1 t_2^2 t_3^2]$$

$$\cong K[x_0, x_1, x_2, x_3, x_4] / \langle x_1 x_2^2 - x_0 x_4^2, x_0 x_2 x_3^2 - x_4^4, x_0^2 x_3^2 - x_1 x_2 x_4^2 \rangle$$

As affine algebra defined by a binomial ideal.

For abelian semigroup *B* the **semigroup ring** R[B] is the free *R*-module with basis t^b for $b \in B$, and multiplication defined by the *R*-bilinear extension of $t^a \cdot t^b = t^{a+b}$.

Example

$$B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3 \quad K \text{ field}$$

$$K[B] = K[t_1^2 t_3^3, t_1^4 t_3, t_2^2 t_3^3, t_1 t_2^3 t_3, t_1 t_2^2 t_3^2]$$

$$\cong K[x_0, x_1, x_2, x_3, x_4] / \langle x_1 x_2^2 - x_0 x_4^2, x_0 x_2 x_3^2 - x_4^4, x_0^2 x_3^2 - x_1 x_2 x_4^2 \rangle$$

As affine algebra defined by a binomial ideal.

Outline:

• Decompose K[B] into simpler pieces.

For abelian semigroup *B* the **semigroup ring** R[B] is the free *R*-module with basis t^b for $b \in B$, and multiplication defined by the *R*-bilinear extension of $t^a \cdot t^b = t^{a+b}$.

Example

$$B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3 \quad K \text{ field}$$

$$K[B] = K[t_1^2 t_3^3, t_1^4 t_3, t_2^2 t_3^3, t_1 t_2^3 t_3, t_1 t_2^2 t_3^2]$$

$$\cong K[x_0, x_1, x_2, x_3, x_4] / \langle x_1 x_2^2 - x_0 x_4^2, x_0 x_2 x_3^2 - x_4^4, x_0^2 x_3^2 - x_1 x_2 x_4^2 \rangle$$

As affine algebra defined by a binomial ideal.

Outline:

- Decompose K[B] into simpler pieces.
- Fast algorithm to compute the regularity of K[B] via decomposition.

For abelian semigroup *B* the **semigroup ring** R[B] is the free *R*-module with basis t^b for $b \in B$, and multiplication defined by the *R*-bilinear extension of $t^a \cdot t^b = t^{a+b}$.

Example

$$B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3 \quad K \text{ field}$$

$$K[B] = K[t_1^2 t_3^3, t_1^4 t_3, t_2^2 t_3^3, t_1 t_2^3 t_3, t_1 t_2^2 t_3^2]$$

$$\cong K[x_0, x_1, x_2, x_3, x_4] / \langle x_1 x_2^2 - x_0 x_4^2, x_0 x_2 x_3^2 - x_4^4, x_0^2 x_3^2 - x_1 x_2 x_4^2 \rangle$$

As affine algebra defined by a binomial ideal.

Outline:

- Decompose K[B] into simpler pieces.
- Fast algorithm to compute the regularity of K[B] via decomposition.
- Determine ring theoretic properties of K[B] via decomposition.

For abelian semigroup *B* the **semigroup ring** R[B] is the free *R*-module with basis t^b for $b \in B$, and multiplication defined by the *R*-bilinear extension of $t^a \cdot t^b = t^{a+b}$.

Example

$$B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3 \quad K \text{ field}$$

$$K[B] = K[t_1^2 t_3^3, t_1^4 t_3, t_2^2 t_3^3, t_1 t_2^3 t_3, t_1 t_2^2 t_3^2]$$

$$\cong K[x_0, x_1, x_2, x_3, x_4] / \langle x_1 x_2^2 - x_0 x_4^2, x_0 x_2 x_3^2 - x_4^4, x_0^2 x_3^2 - x_1 x_2 x_4^2 \rangle$$

As affine algebra defined by a binomial ideal.

Outline:

- Decompose K[B] into simpler pieces.
- Fast algorithm to compute the regularity of K[B] via decomposition.
- Determine ring theoretic properties of $\mathcal{K}[B]$ via decomposition.
- Verify conjectured bounds on the regularity.

Write G(B) for the group generated by B.

< 4 → <

Write G(B) for the group generated by B.

Theorem

Let $A \subset B$ be cancellative abelian semigroups, and R an integral domain.

Write G(B) for the group generated by B.

Theorem

Let $A \subset B$ be cancellative abelian semigroups, and R an integral domain. Then the R[A]-module R[B] is isomorphic to the direct sum of submodules

 $I_g \subset R[G(A)]$

indexed by elements

$$g\in G:=G(B)/G(A).$$

Write G(B) for the group generated by B.

Theorem

Let $A \subset B$ be cancellative abelian semigroups, and R an integral domain. Then the R[A]-module R[B] is isomorphic to the direct sum of submodules

 $I_g \subset R[G(A)]$

indexed by elements

$$g\in G:=G(B)/G(A).$$

Proof.

$$R[B] = igoplus_{g \in G} I'_g$$
 with $I'_g = R \cdot \left\{ t^b \mid b \in B \cap g
ight\} \subset R[B]$

If we choose for each $g \in G$ an $h_g \in g$ then as R[A]-modules

$$I'_{g} \cong I_{g} := R \cdot \left\{ t^{b-h_{g}} \mid b \in B \cap g \right\} \underset{b-h_{g} \in G(A)}{\subset} R[G(A)]$$

Make the decomposition effective?

Make the decomposition effective?

In the following let R = K be a field, and $A \subset B$ be **positive affine** semigroups (finitely generated subsemigroups of some \mathbb{N}^m).

Make the decomposition effective?

In the following let R = K be a field, and $A \subset B$ be **positive affine** semigroups (finitely generated subsemigroups of some \mathbb{N}^m).

$$B_A = \{ x \in B \mid x - a \notin B \, \forall a \in A \setminus \{0\} \}$$

is the unique minimal subset of B with

$$\mathcal{K}[B] = \mathcal{K}[A] \cdot \left\{ t^b \mid b \in B_A \right\}.$$

Make the decomposition effective?

In the following let R = K be a field, and $A \subset B$ be **positive affine** semigroups (finitely generated subsemigroups of some \mathbb{N}^m).

$$B_A = \{ x \in B \mid x - a \notin B \, \forall a \in A \setminus \{0\} \}$$

is the unique minimal subset of B with

$$\mathcal{K}[B] = \mathcal{K}[A] \cdot \left\{ t^b \mid b \in B_A \right\}.$$

For computations we need that B_A is finite.

Make the decomposition effective?

In the following let R = K be a field, and $A \subset B$ be **positive affine** semigroups (finitely generated subsemigroups of some \mathbb{N}^m).

$$B_A = \{ x \in B \mid x - a \notin B \, \forall a \in A \setminus \{0\} \}$$

is the unique minimal subset of B with

$$\mathcal{K}[B] = \mathcal{K}[A] \cdot \left\{ t^b \mid b \in B_A \right\}.$$

For computations we need that B_A is finite. Write C(B) for the positive rational cone generated by B.

Lemma

K[B] is finitely generated K[A]-module iff C(A) = C(B).

Note: If B_A is finite then also G = G(B)/G(A).

For simplicity $A = \langle e_1, ..., e_d \rangle \subset B = \langle b_1 = e_1, ..., b_d = e_d, b_{d+1}, ..., b_n \rangle$.

Image: Image

For simplicity
$$A=\langle e_1,...,e_d
angle\subset B=\langle b_1=e_1,...,b_d=e_d,b_{d+1},...,b_n
angle.$$

Algorithm

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B). **Output:** B_A

For simplicity
$$A=\langle e_1,...,e_d
angle\subset B=\langle b_1=e_1,...,b_d=e_d,b_{d+1},...,b_n
angle.$$

Algorithm

Input:
$$A \subset B \subset \mathbb{N}^m$$
 with $C(A) = C(B)$.
Output: B_A

• Compute $I_B = \ker \varphi$ for $\varphi : K[x_1, ..., x_n] \to K[B]$, $x_i \mapsto t^{b_i}$.

Image: A math and A math and

For simplicity
$$A=\langle e_1,...,e_d
angle\subset B=\langle b_1=e_1,...,b_d=e_d,b_{d+1},...,b_n
angle.$$

Algorithm

- **Input:** $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B). **Output:** B_A
 - Compute $I_B = \ker \varphi$ for $\varphi : K[x_1, ..., x_n] \to K[B]$, $x_i \mapsto t^{b_i}$.
 - **2** Compute monomial K-basis $\{v_i\}$ of $K[x_1, ..., x_n] / \langle x_1, ..., x_d, I_B \rangle$.

For simplicity
$$A=\langle e_1,...,e_d
angle\subset B=\langle b_1=e_1,...,b_d=e_d,b_{d+1},...,b_n
angle.$$

Algorithm

- **Input:** $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B). **Output:** B_A
 - Compute $I_B = \ker \varphi$ for $\varphi : K[x_1, ..., x_n] \to K[B]$, $x_i \mapsto t^{b_i}$.

2 Compute monomial K-basis $\{v_i\}$ of $K[x_1, ..., x_n] / \langle x_1, ..., x_d, I_B \rangle$. **Return:** $B_A = \{ \deg(v_i) \mid i \}$.

For simplicity
$$A=\langle e_1,...,e_d
angle\subset B=\langle b_1=e_1,...,b_d=e_d,b_{d+1},...,b_n
angle.$$

Algorithm

Input:
$$A \subset B \subset \mathbb{N}^m$$
 with $C(A) = C(B)$.
Output: B_A

• Compute $I_B = \ker \varphi$ for $\varphi : K[x_1, ..., x_n] \to K[B], x_i \mapsto t^{b_i}$.

2 Compute monomial K-basis $\{v_i\}$ of $K[x_1, ..., x_n] / \langle x_1, ..., x_d, I_B \rangle$. **Return:** $B_A = \{ \deg(v_i) \mid i \}$.

Example

$$A = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle \subset$$

$$B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3$$

 $\begin{aligned} & \mathcal{K}[x_0, ..., x_4] / \langle x_0, ..., x_3, I_B \rangle = \mathcal{K}[x_0, ..., x_4] / \langle x_0, ..., x_3, x_4^4 \rangle =_{\mathcal{K}} \langle 1, \bar{x}_4, \bar{x}_4^2, \bar{x}_4^3 \rangle \\ & \mathcal{B}_A = \{(0, 0, 0), (1, 2, 2), (2, 4, 4), (3, 6, 6)\} \end{aligned}$

Algorithm

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B).

· < /⊒ > < ∃ >

Algorithm

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B).

Output: Decomposition as \mathbb{Z}^m -graded K[A]-modules

$$R[B] \cong \bigoplus_{g \in G} I_g(-h_g)$$

with monomial ideals $I_g \subset K[A]$ and twists $h_g \in G(B)$.

Algorithm

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B).

Output: Decomposition as \mathbb{Z}^m -graded K[A]-modules

$$R[B] \cong \bigoplus_{g \in G} I_g(-h_g)$$

with monomial ideals $I_g \subset K[A]$ and twists $h_g \in G(B)$.

• Partition $B_A = \bigcup_{g \in G} \Gamma_g$ into classes $\Gamma_g = B_A \cap g$ modulo G(A).

Algorithm

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B).

Output: Decomposition as \mathbb{Z}^m -graded K[A]-modules

$$R[B] \cong \bigoplus_{g \in G} I_g(-h_g)$$

with monomial ideals $I_g \subset K[A]$ and twists $h_g \in G(B)$.

Partition B_A = U_{g∈G} Γ_g into classes Γ_g = B_A ∩ g modulo G(A).
For each g ∈ G choose g' ∈ B ∩ g.

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B).

Output: Decomposition as \mathbb{Z}^m -graded K[A]-modules

$$R[B] \cong \bigoplus_{g \in G} I_g(-h_g)$$

with monomial ideals $I_g \subset K[A]$ and twists $h_g \in G(B)$.

- Partition $B_A = \bigcup_{g \in G} \Gamma_g$ into classes $\Gamma_g = B_A \cap g$ modulo G(A).
- **2** For each $g \in G$ choose $g' \in B \cap g$.
- **3** For each $v \in \Gamma_g$ choose $c_{v,j} \in \mathbb{Z}$ with $v = g' + \sum_{j=1}^d c_{v,j} \cdot e_j$.

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B).

Output: Decomposition as \mathbb{Z}^m -graded K[A]-modules

$$R[B] \cong \bigoplus_{g \in G} I_g(-h_g)$$

with monomial ideals $I_g \subset K[A]$ and twists $h_g \in G(B)$.

- Partition $B_A = \bigcup_{g \in G} \Gamma_g$ into classes $\Gamma_g = B_A \cap g$ modulo G(A).
- **2** For each $g \in G$ choose $g' \in B \cap g$.
- **3** For each $v \in \Gamma_g$ choose $c_{v,j} \in \mathbb{Z}$ with $v = g' + \sum_{j=1}^d c_{v,j} \cdot e_j$.

• Set
$$c'_{g,j} = \min \{c_{v,j} \mid v \in \Gamma_g\}$$

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B).

Output: Decomposition as \mathbb{Z}^m -graded K[A]-modules

$$R[B] \cong \bigoplus_{g \in G} I_g(-h_g)$$

with monomial ideals $I_g \subset K[A]$ and twists $h_g \in G(B)$.

Partition B_A = ∪_{g∈G} Γ_g into classes Γ_g = B_A ∩ g modulo G(A).
For each g ∈ G choose g' ∈ B ∩ g.
For each v ∈ Γ_g choose c_{v,j} ∈ Z with v = g' + Σ^d_{j=1}c_{v,j} · e_j.
Set c'_{g,j} = min {c_{v,j} | v ∈ Γ_g}
Return: h_g = g' + Σ^d_{j=1}c'_{g,j} · e_j I_g = K[A] · {t^{v-h_g} | v ∈ Γ_g}

イロト イポト イヨト イヨト 二日

Input: $A \subset B \subset \mathbb{N}^m$ with C(A) = C(B).

Output: Decomposition as \mathbb{Z}^m -graded K[A]-modules

$$R[B] \cong \bigoplus_{g \in G} I_g(-h_g)$$

with monomial ideals $I_g \subset K[A]$ and twists $h_g \in G(B)$.

Partition B_A = ∪_{g∈G} Γ_g into classes Γ_g = B_A ∩ g modulo G(A).
For each g ∈ G choose g' ∈ B ∩ g.
For each v ∈ Γ_g choose c_{v,j} ∈ Z with v = g' + Σ^d_{j=1}c_{v,j} · e_j.
Set c'_{g,j} = min {c_{v,j} | v ∈ Γ_g}
Return: h_g = g' + Σ^d_{j=1}c'_{g,j} · e_j I_g = K[A] · {t^{v-h_g} | v ∈ Γ_g}
Note: v − h_g = Σ^d_{j=1}(c_{v,j} − c'_{g,j}) · e_j ∈ A, hence I_g is an ideal in K[A].

Example

$$\begin{split} & A = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle \subset \\ & B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3 \end{split}$$

Example

Row r

$$A = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle \subset B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3$$

reduction gives $G(B)/G(A) = \{\overline{(0,0,0)}, \overline{(5,0,0)}\}$, hence

$$B_{A} = \{(0, 0, 0), (2, 4, 4)\} \cup \{(1, 2, 2), (3, 6, 6)\}$$

Example

$$\begin{split} & A = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle \subset \\ & B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3 \end{split}$$

Row reduction gives $G(B)/G(A) = \{\overline{(0,0,0)}, \overline{(5,0,0)}\}$, hence

$$B_{A} = \{(0, 0, 0), (2, 4, 4)\} \cup \{(1, 2, 2), (3, 6, 6)\}$$

	(2, 0, 3)	(4, 0, 1)	(0, 2, 3)	(1, 3, 1)
(0, 0, 0) - (0, 0, 0) =	0	0	0	0
(2, 4, 4) - (0, 0, 0) =	-1	1	2	0
(1, 2, 2) - (5, 0, 0) =	0	-1	1	0
(3, 6, 6) - (5, 0, 0) =	-1	0	3	0

Example

$$\begin{split} & A = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle \subset \\ & B = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1), (1,2,2) \rangle \subset \mathbb{N}^3 \end{split}$$

Row reduction gives $G(B)/G(A) = \{(0, 0, 0), (5, 0, 0)\}$, hence

$$B_{A} = \{(0, 0, 0), (2, 4, 4)\} \cup \{(1, 2, 2), (3, 6, 6)\}$$

	(2, 0, 3)	(4, 0, 1)	(0, 2, 3)	(1, 3, 1)
(0, 0, 0) - (0, 0, 0) =	0	0	0	0
(2, 4, 4) - (0, 0, 0) =	-1	1	2	0
(1, 2, 2) - (5, 0, 0) =	0	-1	1	0
(3, 6, 6) - (5, 0, 0) =	-1	0	3	0

Twists $h_{(0,0,0)} = (0,0,0) - (2,0,3) = (-2,0,-3)$ $h_{(5,0,0)} = (5,0,0) - (2,0,3) - (4,0,1) + (0,2,3) = (-1,2,-1)$

Example

$$B_{A} = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle$$

$$B_{A} = \{(0,0,0), (2,4,4)\} \cup \{(1,2,2), (3,6,6)\}$$

$$h_{(0,0,0)} = (-2,0,-3) \mapsto h_{(5,0,0)} = (-1,2,-1)$$

Example

$$B_{A} = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle$$

$$B_{A} = \begin{cases} (0,0,0), (2,4,4) \} & \cup & \{ (1,2,2), (3,6,6) \} \\ h_{(0,0,0)} = (-2,0,-3) & h_{(5,0,0)} = (-1,2,-1) \end{cases}$$

So the corresponding ideals are generated by

Decomposition algorithm

Example

$$B_{A} = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle$$

$$B_{A} = \begin{cases} (0,0,0), (2,4,4) \} & \cup & \{ (1,2,2), (3,6,6) \} \\ h_{(0,0,0)} = (-2,0,-3) & h_{(5,0,0)} = (-1,2,-1) \end{cases}$$

So the corresponding ideals are generated by

Hence, by $t_1^2 t_3^3 = x_0$ and $t_1^4 t_2^4 t_3^7 = x_1 x_2^2$ we get

 $\mathcal{K}[B] = \left\langle x_0, x_1 x_2^2 \right\rangle (2, 0, 3) \oplus \left\langle x_0, x_1 x_2^2 \right\rangle (1, -2, 1)$

Decomposition algorithm

Example

$$B_{A} = \langle (2,0,3), (4,0,1), (0,2,3), (1,3,1) \rangle$$

$$B_{A} = \begin{cases} (0,0,0), (2,4,4) \} & \cup & \{ (1,2,2), (3,6,6) \} \\ h_{(0,0,0)} = (-2,0,-3) & h_{(5,0,0)} = (-1,2,-1) \end{cases}$$

So the corresponding ideals are generated by

Hence, by $t_1^2 t_3^3 = x_0$ and $t_1^4 t_2^4 t_3^7 = x_1 x_2^2$ we get

$$K[B] = \langle x_0, x_1 x_2^2 \rangle (2, 0, 3) \oplus \langle x_0, x_1 x_2^2 \rangle (1, -2, 1)$$

Via the decomposition of semigroup algebras we can develop a very fast algorithm to determine the regularity of K[B].

Janko Boehm (TU-KL)

Let $R = K[x_1, ..., x_n]$ be the standard graded and $R_+ = \langle x_1, ..., x_n \rangle$.

(日) (周) (三) (三)

Let $R = K[x_1, ..., x_n]$ be the standard graded and $R_+ = \langle x_1, ..., x_n \rangle$.

Definition

The Castelnuovo-Mumford regularity of a graded *R*-module *M* is

$$\operatorname{reg} M = \max\left\{a(H^i_{R_+}(M)) + i \mid i \ge 0\right\}$$

Let $R = K[x_1, ..., x_n]$ be the standard graded and $R_+ = \langle x_1, ..., x_n \rangle$.

Definition

v

а

The Castelnuovo-Mumford regularity of a graded *R*-module *M* is

$$\operatorname{reg} M = \max \left\{ a(H_{R_{+}}^{i}(M)) + i \mid i \geq 0 \right\}$$

where
$$a(H_{R_{+}}^{i}(M)) = \max \left\{ n \mid [H_{R_{+}}^{i}(M)]_{n} \neq 0 \right\} \qquad a(0) = -\infty$$

and $H_{R_{+}}^{i}(M)$ is the *i*-th local cohomology module of M w.r.t R_{+} .

Let $R = K[x_1, ..., x_n]$ be the standard graded and $R_+ = \langle x_1, ..., x_n \rangle$.

Definition

The Castelnuovo-Mumford regularity of a graded *R*-module *M* is

$$\operatorname{\mathsf{reg}} M = \max\left\{ \mathsf{a}(H^i_{R_+}(M)) + i \mid i \geq 0 \right\}$$

where $a(H_{R_{+}}^{i}(M)) = \max \{ n \mid [H_{R_{+}}^{i}(M)]_{n} \neq 0 \}$ $a(0) = -\infty$

and $H^i_{R_+}(M)$ is the *i*-th local cohomology module of M w.r.t R_+ .

It is related to resolutions via:

Proposition (Eisenbud-Goto)

Given a minimal graded free resolution

$$0 \longleftarrow M \longleftarrow \bigoplus_{j=1}^{r_0} R(-d_{0,j}) \longleftarrow \dots \longleftarrow \bigoplus_{j=1}^{r_s} R(-d_{s,j}) \longleftarrow 0$$

Let $R = K[x_1, ..., x_n]$ be the standard graded and $R_+ = \langle x_1, ..., x_n \rangle$.

Definition

The Castelnuovo-Mumford regularity of a graded *R*-module *M* is

$$\operatorname{\mathsf{reg}} M = \max\left\{ \mathsf{a}(H^i_{R_+}(M)) + i \mid i \geq 0 \right\}$$

where $a(H_{R_{+}}^{i}(M)) = \max \{ n \mid [H_{R_{+}}^{i}(M)]_{n} \neq 0 \}$ $a(0) = -\infty$

and $H^i_{R_+}(M)$ is the *i*-th local cohomology module of M w.r.t R_+ .

It is related to resolutions via:

Proposition (Eisenbud-Goto)

Given a minimal graded free resolution

$$0 \longleftarrow M \longleftarrow \bigoplus_{j=1}^{r_0} R(-d_{0,j}) \longleftarrow \dots \longleftarrow \bigoplus_{j=1}^{r_s} R(-d_{s,j}) \longleftarrow 0$$

it holds

$$\operatorname{reg} M = \max \left\{ d_{i,j} - i \mid i, j \right\}$$

Very important application:

A B A B A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

2

Very important application: There are packages of 6, 9 and 20 Chicken McNuggets. Is there a largest number you cannot order?

Very important application: There are packages of 6, 9 and 20 Chicken McNuggets. Is there a largest number you cannot order?

Definition

Given $n \ge 2$ positive integers $a_1 < ... < a_n$ with $gcd(a_1, ..., a_n) = 1$ the **Frobenius number** is the largest integer $F(a_1, ..., a_n)$ which cannot be written as an \mathbb{N}_0 -linear combination of the a_i .

Very important application: There are packages of 6, 9 and 20 Chicken McNuggets. Is there a largest number you cannot order?

Definition

Given $n \ge 2$ positive integers $a_1 < ... < a_n$ with $gcd(a_1, ..., a_n) = 1$ the **Frobenius number** is the largest integer $F(a_1, ..., a_n)$ which cannot be written as an \mathbb{N}_0 -linear combination of the a_i .

Lemma

For
$$B = \langle (a_n, 0), (a_n - a_1, a_1), ..., (a_n - a_{n-1}, a_{n-1}), (0, a_n) \rangle \subset \mathbb{N}^2$$

Very important application: There are packages of 6, 9 and 20 Chicken McNuggets. Is there a largest number you cannot order?

Definition

Given $n \ge 2$ positive integers $a_1 < ... < a_n$ with $gcd(a_1, ..., a_n) = 1$ the **Frobenius number** is the largest integer $F(a_1, ..., a_n)$ which cannot be written as an \mathbb{N}_0 -linear combination of the a_i .

Lemma

For
$$B = \langle (a_n, 0), (a_n - a_1, a_1), ..., (a_n - a_{n-1}, a_{n-1}), (0, a_n) \rangle \subset \mathbb{N}^2$$
 it holds
 $F(a_1, ..., a_n) \leq (\operatorname{reg} K[B] - 1) a_n - 1$

Very important application: There are packages of 6, 9 and 20 Chicken McNuggets. Is there a largest number you cannot order?

Definition

Given $n \ge 2$ positive integers $a_1 < ... < a_n$ with $gcd(a_1, ..., a_n) = 1$ the **Frobenius number** is the largest integer $F(a_1, ..., a_n)$ which cannot be written as an \mathbb{N}_0 -linear combination of the a_i .

Lemma

For
$$B = \langle (a_n, 0), (a_n - a_1, a_1), ..., (a_n - a_{n-1}, a_{n-1}), (0, a_n) \rangle \subset \mathbb{N}^2$$
 it holds

$$F(a_1, ..., a_n) \le (\operatorname{reg} K[B] - 1) a_n - 1$$

Idea of the proof:

$$H^{i}_{\mathcal{K}[\mathcal{B}]_{+}}(\mathcal{K}[\mathcal{B}]) \cong \mathcal{K}[\mathcal{G}(\mathcal{B}) \cap ((\mathbb{Z} \setminus \mathcal{B}_{1}) \times (\mathbb{Z} \setminus \mathcal{B}_{2}))]$$

Janko Boehm (TU-KL)

2

イロト イヨト イヨト イヨト

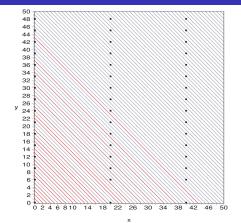
$$a_1 = 6$$

 $a_2 = 9$
 $a_3 = 20$

$$F(6, 9, 20) = 43$$

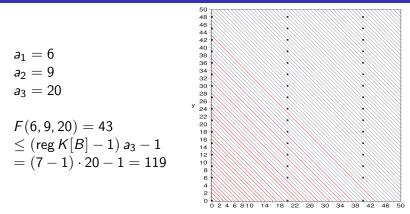
$$\leq (\operatorname{reg} K[B] - 1) a_3 - 1$$

$$= (7 - 1) \cdot 20 - 1 = 119$$



2

<ロ> (日) (日) (日) (日) (日)

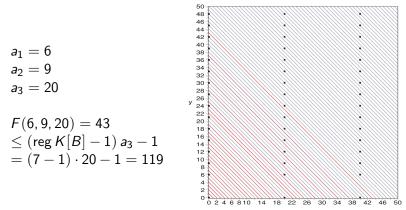


More serious applications:

• Syz_i M can be generated in degree $\leq \operatorname{reg} M + 1$.

×

3



More serious applications:

- Syz_i M can be generated in degree $\leq \operatorname{reg} M + 1$.
- For $t \ge \operatorname{reg} M + 1$ for the Hilbert function it holds $H_M(t) = P_M(t)$ with the Hilbert polynomial $P_M \in \mathbb{Q}[t]$.

×

A positive affine semigroup B has a unique minimal generating set $Hilb(B) = \{b_1, ..., b_n\}$ its **Hilbert basis**.

3

A positive affine semigroup *B* has a unique minimal generating set Hilb(*B*) = { b_1 , ..., b_n } its **Hilbert basis**. Assume that *B* is **homogeneous**, that is, there is a group homomorphism deg : $G(B) \rightarrow \mathbb{Z}$ with deg *b* = 1 for all b_i . Then K[B] is $R = K[x_1, ..., x_n]$ -module by $R \rightarrow K[B], x_i \mapsto t^{b_i}$.

A positive affine semigroup *B* has a unique minimal generating set Hilb(*B*) = { b_1 , ..., b_n } its **Hilbert basis**. Assume that *B* is **homogeneous**, that is, there is a group homomorphism deg : $G(B) \rightarrow \mathbb{Z}$ with deg *b* = 1 for all b_i . Then K[B] is $R = K[x_1, ..., x_n]$ -module by $R \rightarrow K[B], x_i \mapsto t^{b_i}$.

Proposition

Let $A \subset B$ be a submonoid with $Hilb(A) = \{e_1, \ldots, e_d\}$, deg $e_i = 1$, C(A) = C(B), and

$$\mathcal{K}[B] \cong \bigoplus_{g \in \mathcal{G}} I_g(-h_g)$$

Then:

< 🗗 🕨

A positive affine semigroup *B* has a unique minimal generating set Hilb(*B*) = { b_1 , ..., b_n } its **Hilbert basis**. Assume that *B* is **homogeneous**, that is, there is a group homomorphism deg : $G(B) \rightarrow \mathbb{Z}$ with deg *b* = 1 for all b_i . Then K[B] is $R = K[x_1, ..., x_n]$ -module by $R \rightarrow K[B]$, $x_i \mapsto t^{b_i}$.

Proposition

Let $A \subset B$ be a submonoid with $Hilb(A) = \{e_1, \ldots, e_d\}$, deg $e_i = 1$, C(A) = C(B), and

$$\mathsf{K}[B] \cong \bigoplus_{g \in \mathsf{G}} \mathsf{I}_g(-\mathsf{h}_g)$$

Then:

• reg $K[B] = \max \{ \operatorname{reg} I_g + \operatorname{deg} h_g \mid g \in G \}$ (here reg I_g is the regularity of the ideal $I_g \subset K[A]$ w.r.t the canonical $T = K[x_1, \ldots, x_d]$ -module structure $T \to K[A] \subset K[B], x_i \mapsto t^{e_i}$).

▲ @ ▶ < ∃ ▶</p>

A positive affine semigroup *B* has a unique minimal generating set Hilb(*B*) = { b_1 , ..., b_n } its **Hilbert basis**. Assume that *B* is **homogeneous**, that is, there is a group homomorphism deg : $G(B) \rightarrow \mathbb{Z}$ with deg *b* = 1 for all b_i . Then K[B] is $R = K[x_1, ..., x_n]$ -module by $R \rightarrow K[B]$, $x_i \mapsto t^{b_i}$.

Proposition

Let $A \subset B$ be a submonoid with $Hilb(A) = \{e_1, \ldots, e_d\}$, deg $e_i = 1$, C(A) = C(B), and

$$\mathsf{K}[B] \cong \bigoplus_{g \in \mathsf{G}} \mathsf{I}_g(-\mathsf{h}_g)$$

Then:

reg K[B] = max {reg I_g + deg h_g | g ∈ G} (here reg I_g is the regularity of the ideal I_g ⊂ K[A] w.r.t the canonical T = K[x₁,..., x_d]-module structure T → K[A] ⊂ K[B], x_i → t^{e_i}).
deg K[B] = |G| · deg K[A].

Idea of proof:

$\ \, {\it I}\!\! {\it I}^i_{R_+}({\it K}[{\it B}])\cong {\it H}^i_{{\it K}[{\it B}]_+}({\it K}[{\it B}])\cong {\it H}^i_{{\cal T}_+}({\it K}[{\it B}]). \ \, {\it Claim follows from}$

3

Idea of proof:

• $H^{i}_{R_{+}}(K[B]) \cong H^{i}_{K[B]_{+}}(K[B]) \cong H^{i}_{T_{+}}(K[B])$. Claim follows from $K[B] \cong \bigoplus_{g \in G} I_{g}(-h_{g})$ as \mathbb{Z} -graded *T*-modules.

Idea of proof:

$\begin{array}{l} \bullet \hspace{0.1cm} H^{i}_{R_{+}}(K[B])\cong H^{i}_{K[B]_{+}}(K[B])\cong H^{i}_{T_{+}}(K[B]). \hspace{0.1cm} \text{Claim follows from} \\ K[B]\cong \bigoplus_{g\in G} I_{g}(-h_{g}) \hspace{0.1cm} \text{as} \hspace{0.1cm} \mathbb{Z}\text{-graded} \hspace{0.1cm} T\text{-modules}. \end{array}$

2 deg $I_g = \deg K[A]$ for all g.

Idea of proof:

 $\begin{array}{l} \bullet \hspace{0.1cm} H^{i}_{R_{+}}(K[B]) \cong H^{i}_{K[B]_{+}}(K[B]) \cong H^{i}_{T_{+}}(K[B]). \hspace{0.1cm} \text{Claim follows from} \\ K[B] \cong \bigoplus_{g \in G} I_{g}(-h_{g}) \hspace{0.1cm} \text{as} \hspace{0.1cm} \mathbb{Z}\text{-graded} \hspace{0.1cm} T\text{-modules}. \end{array}$

2 deg $I_g = \deg K[A]$ for all g.

Algorithm

Input: Homogeneous semigroup B, field K. **Output:** reg K[B]

Idea of proof:

 $\begin{array}{l} \bullet \hspace{0.1cm} H^{i}_{R_{+}}(K[B]) \cong H^{i}_{K[B]_{+}}(K[B]) \cong H^{i}_{T_{+}}(K[B]). \hspace{0.1cm} \text{Claim follows from} \\ K[B] \cong \bigoplus_{g \in G} I_{g}(-h_{g}) \hspace{0.1cm} \text{as} \hspace{0.1cm} \mathbb{Z}\text{-graded} \hspace{0.1cm} T\text{-modules}. \end{array}$

2 deg $I_g = \deg K[A]$ for all g.

Algorithm

Input: Homogeneous semigroup B, field K. **Output:** reg K[B]

Choose a minimal {e₁, ..., e_d} ⊂ Hilb(B) generating C(B), set A = ⟨e₁, ..., e_d⟩.

Idea of proof:

• $H_{R_+}^i(K[B]) \cong H_{K[B]_+}^i(K[B]) \cong H_{T_+}^i(K[B])$. Claim follows from $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$ as \mathbb{Z} -graded T-modules.

2 deg $I_{\sigma} = \deg K[A]$ for all g.

Algorithm

Homogeneous semigroup B, field K. Input: **Output:** reg K[B]

- Choose a minimal $\{e_1, ..., e_d\} \subset Hilb(B)$ generating C(B), set $A = \langle e_1, \dots, e_d \rangle.$
- 2 Over K[A] decompose $K[B] \cong \bigoplus_{\sigma \in G} I_{\sigma}(-h_{\sigma})$.

・ 何 ト ・ ヨ ト ・ ヨ ト

Idea of proof:

• $H_{R_+}^i(K[B]) \cong H_{K[B]_+}^i(K[B]) \cong H_{T_+}^i(K[B])$. Claim follows from $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$ as \mathbb{Z} -graded T-modules.

2 deg $I_{\sigma} = \deg K[A]$ for all g.

Algorithm

Homogeneous semigroup B, field K. Input: **Output:** reg K[B]

- Choose a minimal $\{e_1, ..., e_d\} \subset Hilb(B)$ generating C(B), set $A = \langle e_1, \dots, e_d \rangle.$
- **2** Over K[A] decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$.
- **3** Determine deg : $G(B) \rightarrow \mathbb{Z}$.

- 4 週 ト - 4 三 ト - 4 三 ト

Idea of proof:

• $H_{R_+}^i(K[B]) \cong H_{K[B]_+}^i(K[B]) \cong H_{T_+}^i(K[B])$. Claim follows from $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$ as \mathbb{Z} -graded T-modules.

2 deg $I_{\sigma} = \deg K[A]$ for all g.

Algorithm

Input: Homogeneous semigroup B, field K. **Output:** reg K[B]

- Choose a minimal $\{e_1, ..., e_d\} \subset Hilb(B)$ generating C(B), set $A = \langle e_1, \dots, e_d \rangle.$
- **2** Over K[A] decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$.
- **3** Determine deg : $G(B) \rightarrow \mathbb{Z}$.
- **Return:** max {reg I_g + deg h_g | $g \in G$ }

- 4月 ト 4 ヨ ト 4 ヨ ト

Idea of proof:

 $\begin{array}{l} \bullet \hspace{0.1cm} H^{i}_{R_{+}}(K[B])\cong H^{i}_{K[B]_{+}}(K[B])\cong H^{i}_{T_{+}}(K[B]). \hspace{0.1cm} \text{Claim follows from} \\ K[B]\cong \bigoplus_{g\in G} I_{g}(-h_{g}) \hspace{0.1cm} \text{as} \hspace{0.1cm} \mathbb{Z}\text{-graded} \hspace{0.1cm} T\text{-modules}. \end{array}$

2 deg $I_g = \deg K[A]$ for all g.

Algorithm

Input: Homogeneous semigroup B, field K. **Output:** reg K[B]

- Choose a minimal {e₁, ..., e_d} ⊂ Hilb(B) generating C(B), set A = ⟨e₁, ..., e_d⟩.
- **3** Over K[A] decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$.
- **3** Determine deg : $G(B) \rightarrow \mathbb{Z}$.

Return: max {reg I_g + deg $h_g \mid g \in G$ }

Key observation: Minimal graded res of I_g has length at most |Hilb(A)|.

Example

In the above example

$$\begin{aligned} &\mathcal{K}[B] = I(2,0,3) \oplus I(1,-2,1) \text{ with} \\ &I = \left\langle x_0, x_1 x_2^2 \right\rangle \subset \mathcal{K}[A] \cong \mathcal{K}[x_0, x_1, x_2, x_3] / \left\langle x_1^2 x_2^3 - x_0^3 x_3^2 \right\rangle \end{aligned}$$

Example

In the above example

$$\begin{split} &\mathcal{K}[B] = I(2,0,3) \oplus I(1,-2,1) \text{ with} \\ &I = \left\langle x_0, x_1 x_2^2 \right\rangle \subset \mathcal{K}[A] \cong \mathcal{K}[x_0, x_1, x_2, x_3] / \left\langle x_1^2 x_2^3 - x_0^3 x_3^2 \right\rangle \right\rangle \end{aligned}$$

A resolution of I as $T = \mathbb{Q}[x_0, x_1, x_2, x_3]$ -module is

$$\begin{pmatrix} x_0 & x_1 x_2^2 \end{pmatrix} \begin{pmatrix} x_1 x_2^2 & x_0^2 x_3^2 \\ -x_0 & -x_1 x_2 \end{pmatrix}$$
$$0 \longleftarrow I \longleftarrow T (-1) \oplus T (-3) \longleftarrow T (-4) \oplus T (-5) \longleftarrow 0$$

hence reg I = 4.

Example

In the above example

$$\begin{split} &\mathcal{K}[B] = I(2,0,3) \oplus I(1,-2,1) \text{ with} \\ &I = \left\langle x_0, x_1 x_2^2 \right\rangle \subset \mathcal{K}[A] \cong \mathcal{K}[x_0, x_1, x_2, x_3] / \left\langle x_1^2 x_2^3 - x_0^3 x_3^2 \right\rangle \right\rangle \end{aligned}$$

A resolution of I as $T = \mathbb{Q}[x_0, x_1, x_2, x_3]$ -module is

$$\begin{pmatrix} x_0 & x_1 x_2^2 \end{pmatrix} \begin{pmatrix} x_1 x_2^2 & x_0^2 x_3^2 \\ -x_0 & -x_1 x_2 \end{pmatrix}$$

$$0 \longleftarrow I \longleftarrow T (-1) \oplus T (-3) \longleftarrow T (-4) \oplus T (-5) \longleftarrow 0$$

hence reg I = 4. The group homomorphism is given by deg $b = (b_1 + b_2 + b_3)/5$ and therefore

$$\operatorname{reg} K[B] = \max \{4 - 1, 4 - 0\} = 4.$$

Timings

Computation of reg K[B] via decomposition of semigroup algebras (MA), resolution (RES) and the algorithm of Bermejo-Gimenez (BG):

- **4 A**

Timings

Computation of reg K[B] via decomposition of semigroup algebras (MA), resolution (RES) and the algorithm of Bermejo-Gimenez (BG):

• $K = \mathbb{Q}$, $B \subset \mathbb{N}^3$ with c + 3 random generators of coordinate sum 5:

с	1	2	3	4	5	6	7	8	9
MA	.073	.089	.095	.10	.13	.14	.14	.19	.16
RES	.0099	.0089	.011	.013	.020	.046	.18	1.1	6.8
BG	.036	.053	.47	1.8	9.0	19	34	39	43
С	10	11	12	13	14	15	16	17	18
MA	.21	.26	.22	.26	.29	.30	.31	.36	.47
RES	30	*	*	*	*	*	*	*	*
BG	85	150	140	250	310	290	300	410	320

Timings

Computation of reg K[B] via decomposition of semigroup algebras (MA), resolution (RES) and the algorithm of Bermejo-Gimenez (BG):

• $K = \mathbb{Q}$, $B \subset \mathbb{N}^3$ with c + 3 random generators of coordinate sum 5:

с	1	2	3	4	5	6	7	8	9
MA	.073	.089	.095	.10	.13	.14	.14	.19	.16
RES	.0099	.0089	.011	.013	.020	.046	.18	1.1	6.8
BG	.036	.053	.47	1.8	9.0	19	34	39	43
С	10	11	12	13	14	15	16	17	18
MA	.21	.26	.22	.26	.29	.30	.31	.36	.47
RES	30	*	*	*	*	*	*	*	*
BG	85	150	140	250	310	290	300	410	320

• $K = \mathbb{F}_{101}$, $B \subset \mathbb{N}^4$ with c + 4 random generators, coordinate sum 5: 12 16 20 24 28 32 36 40 44 48 52 С MA 3.8 13 .69 2.2 1.7 1.9 1.5 6.0 8.9 13 4.4 ΒG 46 150 380 840 940 * * * * * * * * * * * * * * * * * * *

Ring theoretic properties

Proposition

Let K be a field, $B \subset \mathbb{N}^m$ simplicial, $A = \langle e_1, \ldots, e_d \rangle$ with linearly independent $e_i \in B$ and C(A) = C(B). Decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$. Then:

3

Image: A match a ma

Ring theoretic properties

Proposition

Let K be a field, $B \subset \mathbb{N}^m$ simplicial, $A = \langle e_1, \ldots, e_d \rangle$ with linearly independent $e_i \in B$ and C(A) = C(B). Decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$. Then:

• K[B] is Cohen-Macaulay $\iff I_g = K[A] \ \forall g.$

3. 3

Image: A math a math

Let K be a field, $B \subset \mathbb{N}^m$ simplicial, $A = \langle e_1, \ldots, e_d \rangle$ with linearly independent $e_i \in B$ and C(A) = C(B). Decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$. Then:

- K[B] is Cohen-Macaulay $\iff I_g = K[A] \ \forall g.$
- ② K[B] is Gorenstein \iff $I_g = K[A] \forall g$ and $\{h_g \mid g\}$ has exactly one maximal element w.r.t x ≤ y $\Leftrightarrow \exists z \in B : x + z = y$.

3

(日) (同) (三) (三)

Let K be a field, $B \subset \mathbb{N}^m$ simplicial, $A = \langle e_1, \ldots, e_d \rangle$ with linearly independent $e_i \in B$ and C(A) = C(B). Decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$. Then:

- K[B] is Cohen-Macaulay $\iff I_g = K[A] \ \forall g.$
- ② K[B] is Gorenstein $\iff I_g = K[A] \forall g$ and $\{h_g \mid g\}$ has exactly one maximal element w.r.t x ≤ y $\Leftrightarrow \exists z \in B : x + z = y$.
- K[B] is Buchsbaum $\iff \forall g \ I_g = K[A]$ or $I_g = K[A]_+$ and $h_g + b \in B \ \forall b \in Hilb(B)$.

э.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let K be a field, $B \subset \mathbb{N}^m$ simplicial, $A = \langle e_1, \ldots, e_d \rangle$ with linearly independent $e_i \in B$ and C(A) = C(B). Decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$. Then:

- K[B] is Cohen-Macaulay $\iff I_g = K[A] \forall g$.
- ② K[B] is Gorenstein $\iff I_g = K[A] \forall g$ and $\{h_g \mid g\}$ has exactly one maximal element w.r.t x ≤ y $\Leftrightarrow \exists z \in B : x + z = y$.
- K[B] is Buchsbaum $\iff \forall g \ I_g = K[A]$ or $I_g = K[A]_+$ and $h_g + b \in B \ \forall b \in Hilb(B)$.
- K[B] is normal $\iff \forall x \in B_A \exists \lambda_1, \dots, \lambda_d \in \mathbb{Q}$ with $0 \le \lambda_i < 1$ s.t. $x = \sum_{i=1}^d \lambda_i e_i$.

3

イロト イヨト イヨト

Let K be a field, $B \subset \mathbb{N}^m$ simplicial, $A = \langle e_1, \ldots, e_d \rangle$ with linearly independent $e_i \in B$ and C(A) = C(B). Decompose $K[B] \cong \bigoplus_{g \in G} I_g(-h_g)$. Then:

- K[B] is Cohen-Macaulay $\iff I_g = K[A] \forall g$.
- K[B] is Gorenstein ⇐⇒ I_g = K[A] ∀g and {h_g | g} has exactly one maximal element w.r.t x ≤ y ⇔ ∃z ∈ B : x + z = y.
- K[B] is Buchsbaum $\iff \forall g \ I_g = K[A]$ or $I_g = K[A]_+$ and $h_g + b \in B \ \forall b \in Hilb(B)$.
- K[B] is normal $\iff \forall x \in B_A \exists \lambda_1, \dots, \lambda_d \in \mathbb{Q}$ with $0 \le \lambda_i < 1$ s.t. $x = \sum_{i=1}^d \lambda_i e_i$.
- K[B] is seminormal $\iff \forall x \in B_A \exists \lambda_1, \dots, \lambda_d \in \mathbb{Q}$ with $0 \le \lambda_i \le 1$ s.t. $x = \sum_{i=1}^d \lambda_i e_i$.

3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

The conjecture has been proved for:

• dimension 2 (Gruson, Lazarsfeld, and Peskine)

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

- dimension 2 (Gruson, Lazarsfeld, and Peskine)
- Buchsbaum (Stückrad and Vogel)

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

- dimension 2 (Gruson, Lazarsfeld, and Peskine)
- Buchsbaum (Stückrad and Vogel)
- deg S ≤ codim S + 2 (Hoa, Stückrad, and Vogel)

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

- dimension 2 (Gruson, Lazarsfeld, and Peskine)
- Buchsbaum (Stückrad and Vogel)
- deg $S \leq$ codim S + 2 (Hoa, Stückrad, and Vogel)
- smooth surfaces in characteristic 0 (Lazarsfeld) and certain smooth 3-folds (Ran).

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

- dimension 2 (Gruson, Lazarsfeld, and Peskine)
- Buchsbaum (Stückrad and Vogel)
- deg $S \leq$ codim S + 2 (Hoa, Stückrad, and Vogel)
- smooth surfaces in characteristic 0 (Lazarsfeld) and certain smooth 3-folds (Ran).
- homogeneous semigroup rings of codim 2 (Peeva and Sturmfels).

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

The conjecture has been proved for:

- dimension 2 (Gruson, Lazarsfeld, and Peskine)
- Buchsbaum (Stückrad and Vogel)
- deg $S \leq \operatorname{codim} S + 2$ (Hoa, Stückrad, and Vogel)
- smooth surfaces in characteristic 0 (Lazarsfeld) and certain smooth 3-folds (Ran).
- homogeneous semigroup rings of codim 2 (Peeva and Sturmfels).
- simplicial homogeneous semigroup rings if they
 - have an isolated singularity (Herzog, Hibi)

- **(())) (())) ())**

If K is algebraically closed and $I \subset R = K[x_1, ..., x_n]$ is a homogeneous prime ideal then for S = R/I

$$\operatorname{reg} S \leq \operatorname{deg} S - \operatorname{codim} S.$$

Here $\operatorname{codim} S := \dim_K S_1 - \dim S$ denotes the codimension of S.

The conjecture has been proved for:

- dimension 2 (Gruson, Lazarsfeld, and Peskine)
- Buchsbaum (Stückrad and Vogel)
- deg $S \leq$ codim S + 2 (Hoa, Stückrad, and Vogel)
- smooth surfaces in characteristic 0 (Lazarsfeld) and certain smooth 3-folds (Ran).
- homogeneous semigroup rings of codim 2 (Peeva and Sturmfels).
- simplicial homogeneous semigroup rings if they
 - have an isolated singularity (Herzog, Hibi)
 - are seminormal (Nitsche)

20 March 2013 17 / 18

Regularity bounds

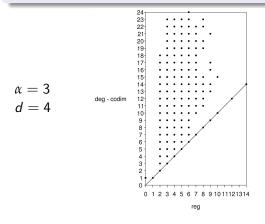
Proposition

The Eisenbud-Goto conjecture holds provided that the minimal generators of B in \mathbb{N}^d have fixed coordinate sum α for d = 3 and $\alpha \leq 5$, for d = 4 and $\alpha \leq 3$, as well as for d = 5 and $\alpha = 2$.

Regularity bounds

Proposition

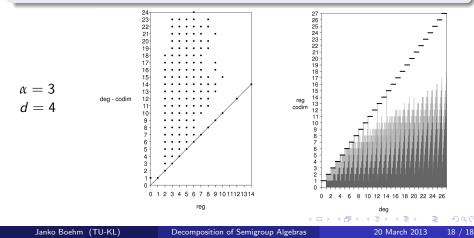
The Eisenbud-Goto conjecture holds provided that the minimal generators of B in \mathbb{N}^d have fixed coordinate sum α for d = 3 and $\alpha \leq 5$, for d = 4 and $\alpha \leq 3$, as well as for d = 5 and $\alpha = 2$.



Regularity bounds

Proposition

The Eisenbud-Goto conjecture holds provided that the minimal generators of B in \mathbb{N}^d have fixed coordinate sum α for d = 3 and $\alpha \leq 5$, for d = 4 and $\alpha \leq 3$, as well as for d = 5 and $\alpha = 2$.



References

- J. Böhm, D. Eisenbud, M. J. Nitsche, *Decomposition of semigroup algebras*, Experim. Math. 21 (2012).
- J. Böhm, D. Eisenbud, M. J. Nitsche, *Decomposition of Monomial Algebras: Applications and Algorithms*, JSAG (2013).
- J. Böhm, D. Eisenbud, M. J. Nitsche, MonomialAlgebras, a Macaulay2 package to compute the decomposition of positive affine semigroup rings, Macaulay2 distribution.
- I. Bermejo, P. Gimenez, *Saturation and Castelnuovo–Mumford regularity*, J. Algebra 303 (2006).
- D. Eisenbud, S. Goto, *Linear free resolutions and minimal multiplicity*, J. Algebra 88 (1984).
 - L. T. Hoa, J. Stückrad, *Castelnuovo-Mumford regularity of simplicial toric rings*, J. Algebra 259 (2003).

Image: A matrix and a matrix

References

- L. Gruson, R. Lazarsfeld, C. Peskine, *On a theorem of Castelnuovo, and the equations defining space curves*, Invent. Math. 72 (1983).
- J. Herzog and T. Hibi, *Castelnuovo-Mumford regularity of simplicial semigroup rings with isolated singularity*, Proc. Amer. Math. Soc. 131 (2003).
- L. T. Hoa, J. Stückrad, W. Vogel, Towards a structure theory for projective varieties of degree = codimension + 2, J. Pure Appl. Algebra 71 (1991).
- M. J. Nitsche, Castelnuovo-Mumford regularity of seminormal simplicial affine semigroup rings, http://arxiv.org/abs/1108.1737.
- I. Peeva, B. Sturmfels, Syzygies of codimension 2 lattice ideals, Math.
 Z. 229 (1998).