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Semigroup rings

For abelian semigroup B the semigroup ring R [B ] is the free R-module
with basis tb for b ∈ B, and multiplication defined by the R-bilinear
extension of ta · tb = ta+b.

Example

B = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1), (1, 2, 2)〉 ⊂N3 K field

K [B ] = K [t21 t33 , t41 t3, t22 t33 , t1t32 t3, t1t22 t23 ]

∼= K [x0, x1, x2, x3, x4]/〈x1x2
2 − x0x2

4 , x0x2x2
3 − x4

4 , x2
0x2

3 − x1x2x2
4 〉

As affine algebra defined by a binomial ideal.

Outline:

Decompose K [B ] into simpler pieces.

Fast algorithm to compute the regularity of K [B ] via decomposition.

Determine ring theoretic properties of K [B ] via decomposition.

Verify conjectured bounds on the regularity.
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Decomposition theorem

Write G (B) for the group generated by B.

Theorem

Let A ⊂ B be cancellative abelian semigroups, and R an integral domain.
Then the R [A]-module R [B ] is isomorphic to the direct sum of submodules

Ig ⊂ R [G (A)]

indexed by elements
g ∈ G := G (B)/G (A).

Proof.

R [B ] =
⊕

g∈G I ′g with I ′g = R ·
{

tb | b ∈ B ∩ g
}
⊂ R [B ]

If we choose for each g ∈ G an hg ∈ g then as R [A]-modules

I ′g
∼= Ig := R ·

{
tb−hg | b ∈ B ∩ g

}
⊂

b−hg∈G (A)
R [G (A)]
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Decomposition of positive affine semigroup rings

Make the decomposition effective?

In the following let R = K be a field, and A ⊂ B be positive affine
semigroups (finitely generated subsemigroups of some Nm).

BA = {x ∈ B | x − a /∈ B ∀a ∈ A \ {0}}

is the unique minimal subset of B with

K [B ] = K [A] ·
{

tb | b ∈ BA

}
.

For computations we need that BA is finite.
Write C (B) for the positive rational cone generated by B.

Lemma

K [B ] is finitely generated K [A]-module iff C (A) = C (B).

Note: If BA is finite then also G = G (B)/G (A).
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Algorithm for minimal generators

For simplicity A = 〈e1, ..., ed 〉 ⊂ B = 〈b1 = e1, ..., bd = ed , bd+1, ..., bn〉.

Algorithm

Input: A ⊂ B ⊂Nm with C (A) = C (B).
Output: BA

1 Compute IB = ker ϕ for ϕ : K [x1, ..., xn]→ K [B ], xi 7→ tbi .

2 Compute monomial K -basis {vi} of K [x1, ..., xn]/ 〈x1, ..., xd , IB〉.
Return: BA = {deg(vi ) | i}.

Example

A = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1)〉 ⊂
B = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1), (1, 2, 2)〉 ⊂N3

K [x0, ..., x4]/ 〈x0, ..., x3, IB〉 = K [x0, ..., x4]/〈x0, ..., x3, x4
4 〉 =K

〈
1, x̄4, x̄2

4 , x̄3
4

〉
BA = {(0, 0, 0), (1, 2, 2), (2, 4, 4), (3, 6, 6)}
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Decomposition algorithm

Algorithm

Input: A ⊂ B ⊂Nm with C (A) = C (B).

Output: Decomposition as Zm-graded K [A]-modules

R [B ] ∼=
⊕

g∈G Ig (−hg )

with monomial ideals Ig ⊂ K [A] and twists hg ∈ G (B).

1 Partition BA =
⋃

g∈G Γg into classes Γg = BA ∩ g modulo G (A).

2 For each g ∈ G choose g ′ ∈ B ∩ g.

3 For each v ∈ Γg choose cv ,j ∈ Z with v = g ′ + ∑d
j=1cv ,j · ej .

4 Set c ′g ,j = min {cv ,j | v ∈ Γg}

Return: hg = g ′ + ∑d
j=1c ′g ,j · ej Ig = K [A] ·

{
tv−hg | v ∈ Γg

}
Note: v − hg = ∑d

j=1(cv ,j − c ′g ,j
≥0

) · ej ∈ A, hence Ig is an ideal in K [A].
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Decomposition algorithm

Example

A = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1)〉 ⊂
B = 〈(2, 0, 3), (4, 0, 1), (0, 2, 3), (1, 3, 1), (1, 2, 2)〉 ⊂N3

Row reduction gives G (B)/G (A) = {(0, 0, 0), (5, 0, 0)}, hence

BA = {(0, 0, 0), (2, 4, 4)} ∪ {(1, 2, 2), (3, 6, 6)}

(2, 0, 3) (4, 0, 1) (0, 2, 3) (1, 3, 1)
(0, 0, 0)− (0, 0, 0) = 0 0 0 0
(2, 4, 4)− (0, 0, 0) = −1 1 2 0
(1, 2, 2)− (5, 0, 0) = 0 −1 1 0
(3, 6, 6)− (5, 0, 0) = −1 0 3 0

Twists h(0,0,0) = (0, 0, 0)− (2, 0, 3) = (−2, 0,−3)

h(5,0,0) = (5, 0, 0)− (2, 0, 3)− (4, 0, 1) + (0, 2, 3) = (−1, 2,−1)
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BA = {(0, 0, 0), (2, 4, 4)} ∪ {(1, 2, 2), (3, 6, 6)}

h(0,0,0) = (−2, 0,−3) h(5,0,0) = (−1, 2,−1)

So the corresponding ideals are generated by

(0, 0, 0) + (2, 0, 3) = (2, 0, 3) (1,−2, 1) + (1, 2, 2) = (2, 0, 3)
(2, 4, 4) + (2, 0, 3) = (4, 4, 7) (1,−2, 1) + (3, 6, 6) = (4, 4, 7)

Hence, by t21 t33 = x0 and t41 t42 t73 = x1x2
2 we get

K [B ] =
〈

x0, x1x2
2

〉
(2, 0, 3)⊕

〈
x0, x1x2

2

〉
(1,−2, 1)

Via the decomposition of semigroup algebras we can develop a very fast
algorithm to determine the regularity of K [B ].
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Regularity

Let R = K [x1, ..., xn] be the standard graded and R+ = 〈x1, ..., xn〉.

Definition

The Castelnuovo-Mumford regularity of a graded R-module M is

reg M = max
{

a(H i
R+

(M)) + i | i ≥ 0
}

where a(H i
R+

(M)) = max
{

n | [H i
R+

(M)]n 6= 0
}

a(0) = −∞

and H i
R+

(M) is the i-th local cohomology module of M w.r.t R+.

It is related to resolutions via:

Proposition (Eisenbud-Goto)

Given a minimal graded free resolution

0←− M ←− ⊕r0
j=1R(−d0,j )←− ...←− ⊕rs

j=1R(−ds,j )←− 0

it holds
reg M = max {di ,j − i | i , j}
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Applications

Very important application:

There are packages of 6, 9 and 20 Chicken
McNuggets. Is there a largest number you cannot order?

Definition

Given n ≥ 2 positive integers a1 < ... < an with gcd(a1, ..., an) = 1 the
Frobenius number is the largest integer F (a1, ..., an) which cannot be
written as an N0-linear combination of the ai .

Lemma

For B = 〈(an, 0), (an − a1, a1), ..., (an − an−1, an−1), (0, an)〉 ⊂N2 it
holds

F (a1, ..., an) ≤ (reg K [B ]− 1) an − 1

Idea of the proof:

H i
K [B ]+

(K [B ]) ∼= K [G (B) ∩ ((Z \ B1)× (Z \ B2))]
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Applications

a1 = 6
a2 = 9
a3 = 20

F (6, 9, 20) = 43
≤ (reg K [B ]− 1) a3 − 1
= (7− 1) · 20− 1 = 119

More serious applications:

Syzi M can be generated in degree ≤ reg M + 1.

For t ≥ reg M + 1 for the Hilbert function it holds HM(t) = PM(t)
with the Hilbert polynomial PM ∈ Q[t].
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Regularity Algorithm

A positive affine semigroup B has a unique minimal generating set
Hilb(B) = {b1, ..., bn} its Hilbert basis.

Assume that B is
homogeneous, that is, there is a group homomorphism deg : G (B)→ Z

with deg b = 1 for all bi . Then K [B ] is R = K [x1, ..., xn]-module by
R � K [B ], xi 7→ tbi .

Proposition

Let A ⊂ B be a submonoid with Hilb(A) = {e1, . . . , ed}, deg ei = 1,
C (A) = C (B), and

K [B ] ∼=
⊕

g∈G Ig (−hg )
Then:

1 reg K [B ] = max {reg Ig + deg hg | g ∈ G}
(here reg Ig is the regularity of the ideal Ig ⊂ K [A] w.r.t the canonical
T = K [x1, . . . , xd ]-module structure T � K [A] ⊂ K [B ], xi 7→ tei ).

2 deg K [B ] = |G | · deg K [A].
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Regularity Algorithm

Idea of proof:

1 H i
R+

(K [B ]) ∼= H i
K [B ]+

(K [B ]) ∼= H i
T+

(K [B ]). Claim follows from

K [B ] ∼=
⊕

g∈G Ig (−hg ) as Z-graded T -modules.

2 deg Ig = deg K [A] for all g .

Algorithm

Input: Homogeneous semigroup B, field K .
Output: reg K [B ]

1 Choose a minimal {e1, ..., ed} ⊂ Hilb(B) generating C (B), set
A = 〈e1, ..., ed 〉.

2 Over K [A] decompose K [B ] ∼=
⊕

g∈G Ig (−hg ).

3 Determine deg : G (B)→ Z.
Return: max {reg Ig + deg hg | g ∈ G}

Key observation: Minimal graded res of Ig has length at most |Hilb(A)|.
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Regularity Algorithm

Example

In the above example

K [B ] = I (2, 0, 3)⊕ I (1,−2, 1) with

I =
〈

x0, x1x2
2

〉
⊂ K [A] ∼= K [x0, x1, x2, x3]/

〈
x2
1x3

2 − x3
0x2

3 〉
〉

A resolution of I as T = Q[x0, x1, x2, x3]-module is

(
x0 x1x2

2

) (
x1x2

2 x2
0x2

3

−x0 −x1x2

)
0←− I ←− T (−1)⊕ T (−3)←− T (−4)⊕ T (−5)←− 0

hence reg I = 4. The group homomorphism is given by
deg b = (b1 + b2 + b3)/5 and therefore

reg K [B ] = max {4− 1, 4− 0} = 4.
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Timings

Computation of reg K [B ] via decomposition of semigroup algebras (MA),
resolution (RES) and the algorithm of Bermejo-Gimenez (BG):

K = Q, B ⊂N3 with c + 3 random generators of coordinate sum 5:

c 1 2 3 4 5 6 7 8 9

MA .073 .089 .095 .10 .13 .14 .14 .19 .16
RES .0099 .0089 .011 .013 .020 .046 .18 1.1 6.8
BG .036 .053 .47 1.8 9.0 19 34 39 43

c 10 11 12 13 14 15 16 17 18

MA .21 .26 .22 .26 .29 .30 .31 .36 .47
RES 30 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
BG 85 150 140 250 310 290 300 410 320

K = F101, B ⊂N4 with c + 4 random generators, coordinate sum 5:

c 12 16 20 24 28 32 36 40 44 48 52

MA 3.8 13 .69 2.2 1.7 1.9 1.5 4.4 6.0 8.9 13
BG 46 150 380 840 940 ∗ ∗ ∗ ∗ ∗ ∗
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Ring theoretic properties

Proposition

Let K be a field, B ⊂Nm simplicial, A = 〈e1, . . . , ed 〉 with linearly
independent ei ∈ B and C (A) = C (B). Decompose
K [B ] ∼=

⊕
g∈G Ig (−hg ). Then:

1 K [B ] is Cohen-Macaulay ⇐⇒ Ig = K [A] ∀g.

2 K [B ] is Gorenstein ⇐⇒ Ig = K [A] ∀g and {hg | g} has exactly one
maximal element w.r.t x ≤ y ⇔ ∃z ∈ B : x + z = y.

3 K [B ] is Buchsbaum ⇐⇒ ∀g Ig = K [A] or Ig = K [A]+ and
hg + b ∈ B ∀b ∈ Hilb(B).

4 K [B ] is normal ⇐⇒ ∀x ∈ BA ∃λ1, . . . , λd ∈ Q with 0 ≤ λi < 1 s.t.
x = ∑d

i=1 λiei .

5 K [B ] is seminormal ⇐⇒ ∀x ∈ BA ∃λ1, . . . , λd ∈ Q with 0 ≤ λi ≤ 1
s.t. x = ∑d

i=1 λiei .
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Regularity bounds

Conjecture (Eisenbud-Goto, 1984)

If K is algebraically closed and I ⊂ R = K [x1, ..., xn] is a homogeneous
prime ideal then for S = R/I

reg S ≤ deg S − codim S.

Here codim S := dimK S1 − dim S denotes the codimension of S.

The conjecture has been proved for:

dimension 2 (Gruson, Lazarsfeld, and Peskine)
Buchsbaum (Stückrad and Vogel)
deg S ≤ codim S + 2 (Hoa, Stückrad, and Vogel)
smooth surfaces in characteristic 0 (Lazarsfeld) and certain smooth
3-folds (Ran).
homogeneous semigroup rings of codim 2 (Peeva and Sturmfels).
simplicial homogeneous semigroup rings if they

have an isolated singularity (Herzog, Hibi)
are seminormal (Nitsche)
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Regularity bounds

Proposition

The Eisenbud-Goto conjecture holds provided that the minimal generators
of B in Nd have fixed coordinate sum α for d = 3 and α ≤ 5, for d = 4
and α ≤ 3, as well as for d = 5 and α = 2.

α = 3
d = 4
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