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Calabi-Yau varieties and mirror symmetry

locally

World "=" (4-dim spacetime) X (3-dim compact cx mfld X)
X Calabi-Yau variety: Ky = A3T§ = Qf =2 Ox
X
SN

B-model of X A-model of X
B-model of XV X A-model of XV
Algebraic geometry <  Symplectic geometry
Mcomplex (X) = MK‘éhler (XV)
Deformations of
complex structure symplectic structure
Tangent spaces
Hl (TX) — H2,1 (X) o~ Hl,l (X\/>
by Bogomolov-Tian-Todorov if Moser
HO (Tx) = H?>9 (X)) = HY (X) =0
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Calabi-Yau varieties and mirror symmetry

0 At 0
1 [ | .
0 hl.l 0
0 0
H2,1 (X) (] Hl,l (X\/)
mirror map induces equality
Vv
B3 (q) = A (Q)
(differential equations) (# of genus g curves)
Algebraic geometry Symplectic geometry
N\ /

Tropical geometry
interpreting lattice points as
Deformations Divisor classes
(H' (XY, 0%.) = H (X", Z))
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Xi +t - [5]
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Degenerations

Understand M comprex (X) near large complex structure limit Xp.
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Xo = {xox1xx3xq = 0} C P*
Xi +t - [5]

Xo = { XgX3 = X1Xo = 0} c p3
Xi +t-2] +t-[2]
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Degenerations

Understand M comprex (X) near large complex structure limit Xp.

N

Janko Bshm (TU-KL)

Xo = {xox1xx3xq = 0} C P*
Xi +t - [5]

Xo = { XgX3 = X1Xo = 0} c p3
Xi +t-2] +t-[2]

Xo = {xox1 = x1x0 = x2x3 = x3x4 = x4x0 = 0} C IP*
X by structure theorem
of Buchsbaum-Eisenbud
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Structure results for Gorenstein rings

Gorenstein codim < 2 = complete intersection.

Definition

X C P", codim X = 3 is called Pfaffian subscheme if X is the degeneracy
locus of a skew symmetric map ¢ : € (—t) — £*, where £ is rank

2k 4 1 vector bundle on IP", ¢ is generically of rank 2k, degenerates in
expected codim 3 to rank 2k — 2.
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X C P", codim X = 3 is called Pfaffian subscheme if X is the degeneracy
locus of a skew symmetric map ¢ : € (—t) — £*, where £ is rank

2k 4 1 vector bundle on IP", ¢ is generically of rank 2k, degenerates in
expected codim 3 to rank 2k — 2.

A\

Theorem (Buchsbaum-Eisenbud)
Has loc. free resolution (i = Pfaffy, @, s = c1 (£) + kt)

0— Opn (—t—25) = E(—t—5) 5 & (=) 5 Opr — Ox — 0

v
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Structure results for Gorenstein rings

Gorenstein codim < 2 = complete intersection.

Definition

X C P", codim X = 3 is called Pfaffian subscheme if X is the degeneracy
locus of a skew symmetric map ¢ : € (—t) — £*, where £ is rank

2k 4 1 vector bundle on IP", ¢ is generically of rank 2k, degenerates in
expected codim 3 to rank 2k — 2.

Theorem (Buchsbaum-Eisenbud)
Has loc. free resolution (i = Pfaffy, @, s = c1 (£) + kt)

0— Opn (—t—25) = E(—t—5) 5 & (=) % Opn — Ox — 0

v

Calabi-Yau <= t+2s=n+1
Theorem (Walter)
Gorenstein, codim 3, w$ = Ox (1), tech. cond. = Pfaffian
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Structure results for Gorenstein rings

Example
0 — RY(=5) — R%(=3) — R5(—-2) — R/I
0 0 xg x3 0
0 0 0 X0 X2
( —X0X4 X3X4 —XoX3 X1X0 —X0Xi ) . —X1 0 0 0 xq =0
—X3  —Xp 0 0 O
0 —x —x4 0 O
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Structure results for Gorenstein rings

Example
0 — RY(=5) — R%(=3) — R5(—-2) — R/I
0 0 xg x3 0
0 0 0 X0 X2
( —X0X4 X3X4 —XoX3 X1X0 —X0Xi ) . —X1 0 0 0 xq =0
—X3  —Xp 0 0 O
0 —x —x4 0 O

No general structure theorem for codim > 4.

Theorem (Kustin-Miller unprojection)

R/ Gorenstein codimc, | C J, ¢ :J/I — R/l =

RIT] / (I, T-u—¢(u)|ueJ) is Gorenstein codim c + 1
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Y = TV(X) a Q-Gorenstein toric Fano variety, where ¥ = Fan (A*) over
a Fano polytope in Ng = N® R, N =Z", M = Homz(N, Z).
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Setup

Y = TV(X) a Q-Gorenstein toric Fano variety, where ¥ = Fan (A*) over
a Fano polytope in Ng = N® R, N =Z", M = Homz(N, Z).

Flat family of Calabi-Yau varieties X — SpecC [t]| with fibers X; C Y.

Cox ring S =C [x, | r € X(1)] graded by

0=MAEZZOEEA (V)0 P02 -2 -Z 0

Strata (Y) = A,
Theorem (Cox)

Subschemes of Y = saturated (all ass. primes exist in Y') ideals of S.

Depending on Y/, replace S by Picard-Cox ring R = Dacric(v) S
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Fundamental data: Strata of special fiber

Degeneration specified by ideal

X: /CC[t]@S Xo: hCS
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Degeneration specified by ideal
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Fundamental data: Strata of special fiber

Degeneration specified by ideal

X: /CC[t]@S Xo: hCS
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Mg Strata A
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Fundamental data: Strata of special fiber

Degeneration specified by ideal

X: /CC[t]@S Xo: hCS

Fundamental data:

Mg Strata A
NRr Tropical variety Grobner cone

Strata (Xp) = S9
N { xox3 = x1x0 = 0} C IP3
Strata (Y) = A
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quarticA2.swf
Media File (application/x-shockwave-flash)
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(Loading torus.gif)
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Media File (application/x-shockwave-flash)


Fundamental corrspondences: Weight vectors

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012 11 /28



Fundamental corrspondences: Weight vectors

Space of homogeneous weight vectors on S:
Hom (R*™),R)
NRr = :
Hom(A,—1(Y)®R,R)
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Fundamental corrspondences: Weight vectors

Space of homogeneous weight vectors on S:

Hom(IRz(l),]R) 3. R*
Nr = Hom(A, 1(Y)®R,R) % N = R(1,1,1.1)
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Fundamental corrspondences: Weight vectors

Space of homogeneous weight vectors on S:
Ng Hom (R*™),R)

_ 3. _ _ R
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Fix ideal J C S. Classification of weight orderings with respect to J:

w~w & in, (J) =in, (J)
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Fundamental corrspondences: Weight vectors

Space of homogeneous weight vectors on S:

Hom(IRz(l),]R) 3. R*
Nr = Hom(A, 1(Y)®R,R) % N = R(1,1,1.1)

Fix ideal J C S. Classification of weight orderings with respect to J:
w~w & in, (J) =in, (J)

Classes are given by linear equalities and inequalities: Grobner cones.
Grobner cones form Grobner fan.

For degeneration X given by | with special fiber given by fy: special fiber
Grébner cone

C’o (/) :CI{W € R N | in, (I) = /0}
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Amoeba of V C (C*)" is its image under
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(zi) = (—log|zl)
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Amoebas and tropical varieties

Amoeba of V C (C*)" is its image under
log,: (C*)" — R”
(zi) = (—log|zl)

K = C{{t}} field of Puiseux series
val: K — QU{oo} vanishing order

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012 12 /



Amoebas and tropical varieties

Amoeba of V C (C*)" is its image under
(C*)n — IR”

log; :
(z) = (—log:|z])

K = C{{t}} field of Puiseux series

val: K — QU{oo} vanishing order

Non-Archimedian amoeba or tropical variety
trop (1), I C K [x1, ..., Xp] is the closure of the
image of Vi (/) under

val: (K*)" — R”
() = (=loglall) = (val (z))

7] = e+t
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Amoebas and tropical varieties

Amoeba of V C (C*)" is its image under
(C*)n — IR”

log; :
(z) = (—log:|z])

K = C{{t}} field of Puiseux series

val: K — QU{oo} vanishing order

Non-Archimedian amoeba or tropical variety
trop (1), I C K [x1, ..., Xp] is the closure of the
image of Vi (/) under

val: (K*)" — R”
() = (=loglall) = (val (z))

7] = e+t

trop (/) is computable via Grébner basis techniques.

7 February 2012 12 /
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Computing tropical varieties

The tropical semiring is RU {oo} with tropical addition and multiplication
a® b=min(a,b) aOb=a+b

additive unit is oo, multiplicative unit is 0, in general no additive inverse.
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Computing tropical varieties

The tropical semiring is RU {oo} with tropical addition and multiplication
a® b=min(a,b) aOb=a+b

additive unit is oo, multiplicative unit is 0, in general no additive inverse.
Tropical polynomial is a piecewise linear function.

f= Za b, (t)-x? € K[x1, ..., Xn]

tropicalizes to

trop () = @a val (b, (t)) ® x®?

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012 13 / 28



Computing tropical varieties

The tropical semiring is RU {oo} with tropical addition and multiplication
a® b=min(a,b) aOb=a+b

additive unit is oo, multiplicative unit is 0, in general no additive inverse.
Tropical polynomial is a piecewise linear function.

f= Za b, (t)-x? € K[x1, ..., Xn]
tropicalizes to

trop () = @a val (b, (t)) ® x®?

val (Vi (1)) for | C K [x1, ..., x] is the intersection of the corner loci of
trop (f) for f € 1.
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Computing tropical varieties

The tropical semiring is RU {oo} with tropical addition and multiplication
a® b=min(a,b) aOb=a+b

additive unit is oo, multiplicative unit is 0, in general no additive inverse.
Tropical polynomial is a piecewise linear function.

f= Za b, (t)-x? € K[x1, ..., Xn]
tropicalizes to

trop () = @a val (b, (t)) ® x®?

val (Vi (1)) for | C K [x1, ..., x] is the intersection of the corner loci of
trop (f) for f € 1.

val (Vi (1)) = {w € R" | iny, (I) contains no monomial}

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012 13 / 28



Fundamental data: Tropical variety
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Fundamental data: Tropical variety

Tropical geometry associates to degenerations polyhedral objects in the
space of weights.
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Fundamental data: Tropical variety

Tropical geometry associates to degenerations polyhedral objects in the
space of weights.

f=t 5+t x5+t x5+ xx1x
Weight: trop (f) = min {1+ 3wy, 14+ 3wy, 1+ 3wy, wy + wi + wo}
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domains of linearity of trop (f)
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Fundamental data: Tropical variety

Tropical geometry associates to degenerations polyhedral objects in the
space of weights.

f=t 5+t x5+t x5+ xx1x
Weight: trop (f) = min {1+ 3wy, 14+ 3wy, 1+ 3wy, wy + wi + wo}

domains of linearity of trop (f)

Considering t as a variable denote for /| C C[t]® S
BF(/) = val (VC{{S}} (/)) CR® N]R

as the Bergman fan of /.
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Fundamental data: Tropical variety

Tropical geometry associates to degenerations polyhedral objects in the
space of weights.

f=t 5+t x5+t x5+ xx1x
Weight: trop (f) = min {1+ 3wy, 14+ 3wy, 1+ 3wy, wy + wi + wo}

domains of linearity of trop (f)

Considering t as a variable denote for /| C C[t]® S
BF(/) = val (VC{{S}} (/)) CR® N]R
as the Bergman fan of /.

trop (1) = BF (I) N {w; =1}
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Special fiber tropical variety

Intersecting Cj, (/) with Bergman fan BF (/)
BF, (1) C Gy, (1)

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012 15 / 28



Special fiber tropical variety

Intersecting Cj, (/) with Bergman fan BF (/)
BF, (1) C G, (1)

Intersecting with plane {w; = 1} identifies s =t
T, (1) C V C Ng

the special fiber tropical variety in the special fiber polytope.
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Special fiber tropical variety

Intersecting Cj, (/) with Bergman fan BF (/)
BF, (1) C Gy, (1)
Intersecting with plane {w; = 1} identifies s =t
T, (1) C V C Ng
the special fiber tropical variety in the special fiber polytope.
Example:

Xox3 + t- (Xg + Xox1 + )
X1xo +t- (Xg —+ Xox1 + )

\Y 1 8 14
4

8 1
T, () 1 4 0 0
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Special fiber tropical variety

Intersecting Cj, (/) with Bergman fan BF (/)
BF, (1) C G, (1)

Intersecting with plane {w; = 1} identifies s =t
T, (1) C V C Ng

the special fiber tropical variety in the special fiber polytope.
Example:
Xox3 + t- (Xg + Xox1 + )
X1xo +t- (Xg —+ Xox1 + )

\Y 1 8 14
T,() 1 4

8 1
4 0 O

Ty, (1) is a subcomplex of dV of same dim and codim as X;.
Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012 15 / 28
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String limit

The points of T}, (/) are vanishing orders of power series solutions of / in
the parameter t.
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The points of T}, (/) are vanishing orders of power series solutions of / in
the parameter t.

lim: T, () — StrataXp
F — {Iimtﬁo a(t)|acval? relintF}

induces inclusion reversing bijection.
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Idea: Decompose the generators of / into characters m of (C*)Z(l).

Example:
X0 XL
f1:X0X3+t'(Xg+X0X1+ ) X3 g
2 2
h=xx+t- (¢ +xx+ ...) 0 x
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What are the lattice points of V* C MR?

Idea: Decompose the generators of / into characters m of (C*)Z(l).
Example:

Xo X1
f1:X0X3+1."(Xg+X0X1+ ) X3 g
2 2
h=xx+t- (¢ +xx+ ...) 0 x
X1X2 " X2

Let m € image (O - M — Zz(l)).
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Example: Batyrev's construction and degenerations

Batyrev:

Duality of reflexive polytopes ’ -
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Example: Batyrev's construction and degenerations

Batyrev:

Duality of reflexive polytopes ’ -

Involution of Gorenstein toric Fano var. polarized by — Ky
Mirror symmetry of anti-canonical hypersurfaces

Associate to A monomial degeneration X given by
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Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012



Example: Batyrev's construction and degenerations

Batyrev:

Duality of reflexive polytopes ’ -

Involution of Gorenstein toric Fano var. polarized by — Ky
Mirror symmetry of anti-canonical hypersurfaces

Associate to A monomial degeneration X given by

I:<m0—|—t- Z am-q)m(mo)> with my = H Xy

meANM rex(1)

dA* N N = Divisor classes on X induced from Y

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012



Example: Batyrev's construction and degenerations

Batyrev:

Duality of reflexive polytopes ’ -

Involution of Gorenstein toric Fano var. polarized by — Ky
Mirror symmetry of anti-canonical hypersurfaces

Associate to A monomial degeneration X given by
I:<m0—|—t- Z am-q)m(mo)> with my = H Xy
meANM rex(1)

dA* N N = Divisor classes on X induced from Y
dA* N N = Polynomial deformations of Xy’ C Y (not id)

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012



Example: Batyrev's construction and degenerations

Batyrev:

Duality of reflexive polytopes ’ -

Involution of Gorenstein toric Fano var. polarized by — Ky
Mirror symmetry of anti-canonical hypersurfaces
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Example: Batyrev's construction and degenerations

Batyrev:

Duality of reflexive polytopes ’ -

Involution of Gorenstein toric Fano var. polarized by — Ky
Mirror symmetry of anti-canonical hypersurfaces

Associate to A monomial degeneration X given by

I:<m0—|—t- Z am-q)m(mo)> with my = H Xy

meANM rex(1)

0A* N N = Divisor classes on X induced from Y

dA* N N = Polynomial deformations of Xy’ C Y (not id)
A* = Weights on S selecting (mg) as lead ideal (w; = 1)
dA* = Strata of {my = 0}

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012
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Mirror degeneration
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Mirror degeneration

Idea: Natural deformation—divisor mirror map.
YV =TV(ZV) toric Fano, ¥ =Fan (V*), S=C|y, | r € £V (1)].

Iy = <H yr | Q-Cartier, U #* D Ty, (l)>

red red

Iy = (y1y2y3ya, ysyeyrys)

IV:<mo—|—t- Y am-(pm(mo)]moel(}/>

mé&Strata(Xp)*NN
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dim(0) = dim (F)+ codim %
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dim(0) = dim (F)+ codim %
— F—X()={t=1+{0)|T€X}
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Integrally affine structures

Condition (T): VF e T, (1) doreX : FCo
dim(0) = dim (F)+ codim %
— F—X(0)={t=1+(0)|T€X}
integrally affine structure (— Gross-Siebert program)

(T) is satisfied for ~Gorenstein hypersurfaces
c.i. in Gorenstein Y = P ( A) 3 = NF (A)

Task: Find fan birational to Y such that (T) is satisfied.

Janko Bshm (TU-KL) Tropical mirror symmetry 7 February 2012 20 / 28
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Fermat deformations

A subset R C V"N M is called set of Fermat deformations of X if

e P = convhull (R) is a Fano polytope, and
o the tropical deformation co-complex tropDef,. (P) = Strata (Xp)”

Example:
2 2
) xox3+t-[2] =0 X | x X ox x| x| %] x
P X = EEREEERE
xxp+t-[2] =0 xpol xol xo | x| xpol X1 x| xq
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Fermat deformations

A subset R C V"N M is called set of Fermat deformations of X if

e P = convhull (R) is a Fano polytope, and

o the tropical deformation co-complex tropDef,. (P) = Strata (Xp)”

Example:

xox3 +t-[2] =0 x [l ] x| x| ]
]PZ > Xt — | X8, | X3 Xox3 Xo Xo | Xo| XoX3 X3
. - X0 X X1 | X3 X3 X3l X2 | Xo
xx tt [2] =0 x1x0| xo| xo x| x1x0| x1 xg X1

2 2 2 2

X X X X
P = convhull (yO:O,ylzl,yQZQ, :3>
X1X2 X0X3 XpX3 X1X2
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Fermat deformations

A subset R C V"N M is called set of Fermat deformations of X if

e P = convhull (R) is a Fano polytope, and
o the tropical deformation co-complex tropDef,. (P) = Strata (Xp)”

Example:

xox3+t-[2] =0 x | XA x x| x] %] e
]132 > Xt — | X8, | X3 XoX3 Xo X0, | X0 X0X3| X3
.[2] = X0 oxo x| x3 X3 x5 x| X
X1xp +t [2] =0 x1x0] _xo| Xxo Xxol xixo| x1] x1 X1

2 2 2 2

X X X X
P = convhull (yo =0 ="l =" y=" )
X1X2 X0 X3 X0X3 X1X2

yoys +t- (y2 +y3)

P3/Z4s D X = .
viya+t- (v +v3)
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A = Af, + + Ag
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Applications: Complete intersections

Y Gorenstein toric Fano <+ X = NF (A), A reflexive.

Complete intersection £(1) = R U .. U R.
given by nef partition —-Ky = E + .. + E
A = Af, + + Ag

c

Degeneration X; C Y

l:<mj+t- Y. am- @, (m)) ]jzl,...,c> where m; = [ [ x-

mEAEJﬂM reR;
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Applications: Complete intersections

Y Gorenstein toric Fano <+ X = NF (A), A reflexive.

Complete intersection £(1) = R U .. U R.
given by nef partition —Ky = E + .. + E.
A = Af, + + Ag

c

Degeneration X; C Y

l:<mj+t- Y. am- @, (m)) ]jzl,...,c> where m; = [ [ x-

mEAEJﬂM reR;

Then tropical mirror X}/ C YV is the degeneration assoc. to dual nef part.

Batyrev-Borisov:
V=Vi+..4+V, —
V; = convhull (/; U {0})

Janko Bshm (TU-KL)
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Applications: Pfaffian non-complete intersection C(4,7)
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Applications: Pfaffian non-complete intersection C(4,7)

Generic degree 14 Calabi-Yau 3-fold in IP® given by the 6 x 6 Pfaffians of

Ai: FY (=1) — F with F =70

0 0 X0 0 0 —X1 0

0 0 0 x3 0 0 —x

—X0 0 0 0 X6 0 0 .
A=l 0 x5 0 0 0 x 0 —|—t-< figvev”c )

0 0 —x 0 0 0 x

v 0 0 —x 0 0 0

0 X4 0 0 —X5 0 0

degenerating to Stanley-Reisner ring of 9C (4,7) .
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Applications: Pfaffian non-complete intersection C(4,7)

oV 6 : X7
YV =P"/Z7 Fermat deformations _—

i—1Xi+1
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Applications: Pfaffian non-complete intersection C(4,7)

YV =1%/27, Fermat deformations i—)l(ii+1
0 sy W 0 0 —»n —s%
—-sy, 0 Sys ¥3 0 0 —Ya
v —sys 0 Y1 Y6 0 0
Al = 0 —y —-s;m 0 sy y»» 0
0 0 ¥ —sya O SYo Vs
yi 0 0 =y —sy 0 sy3
Y6 V4 0 0

—ys —sy3 0
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Applications: Pfaffian non-complete intersection C(4,7)

YV =1%/27, Fermat deformations i—)l(ii+1
0 sy W 0 0 —»n —s%
—-sy, 0 Sys ¥3 0 0 —Ya
v —sys 0 Y1 Y6 0 0
Al = 0 —y —-s;m 0 sy y»» 0
0 0 ¥ —sya O SYo Vs
yi 0 0 =y —sy 0 sy3
Y6 V4 0 0

—ys —sy3 0
Recover Rgdland'’s orbifolding mirror.

Janko Bshm (TU-KL)

Tropical mirror symmetry

7 February 2012
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Applications: Degree 13 Pfaffian non-complete intersection

Generic degree 13 Pfaffian C-Y 3-fold in IP®
Ac: FY(=1) — F with F = O (1) ® 40

0 0 xix0 —x5x5 O
0 0 0 X3 —X7 .
A = —x1xo 0 0 0 X4 +t- ( EEQ\:I”C )
X5 X6 —X3 0 0 0

O X7 —X4 0 0

7 February 2012 25 /28
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Applications: Degree 13 Pfaffian non-complete intersection

Generic degree 13 Pfaffian C-Y 3-fold in IP®
Ac: FY(=1) — F with F = O (1) ® 40

0 0 x1x0 —X5xp 0
0 0 0 3 X eneric
A = —X1 X2 0 0 0 X4 +t- ( fkew )
X5 X6 —X3 0 0 0
O X7 —X4 0 0
Xg X12X2 X1X22 2

vV _ 16 : X1X) X6 X0X3X4 X0X3X4 X5
YV =1P°/Z13 Fermat deformations X§ o g% o

X3X4X6 X1X2Xs X1 X2 X5
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Applications: Degree 13 Pfaffian non-complete intersection

Generic degree 13 Pfaffian C-Y 3-fold in IP®
Ac: FY(=1) — F with F = O (1) ® 40

0 0 x1x0 —X5xp 0
0 0 0 5 o eneric
Ai=| —xixx O 0 0 Xa +t- ( fkew )
x5xg —x3 0 0 0
O X7 —X4 0 0
Xg X12X2 X1X22 )
vV _ b . X,
YV =P°/Z3 Fermat deformations Xl)’%,xﬁ ngi? Xgﬁf &
X3X4 X6 X1 X2 X5 X1 X0 X5
0 sz yiy2 —Y5¥6 sy3
—sy? 0 s(ys — ye6) 1% —yr
Al =1 —ny —s(ys—x) 0 — sy Va
Y5 Y6 —y3 Sy7 0 s(y1+y2)
—sy3 ¥ —Ya —s(y1+ ) 0

7 February 2012 25 /28
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