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Calabi-Yau varieties and mirror symmetry

World
locally
= (4-dim spacetime) � (3-dim compact cx m�d X )

X Calabi-Yau variety: KX = ^3T �X = Ω3
X
�= OX

X

B-model of X
B-model of X_

A-model of X
A-model of X_

Algebraic geometry $ Symplectic geometry
Mcomplex (X ) � MK ähler (X_)

Deformations of
complex structure symplectic structure

Tangent spaces
H1 (TX ) = H2,1 (X ) �= H1,1 (X_)

by Bogomolov-Tian-Todorov if Moser
H0 (TX ) = H2,0 (X ) = H1,0 (X ) = 0
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Calabi-Yau varieties and mirror symmetry

H2,1 (X ) �= H1,1 (X_)
mirror map induces equality

BX
g (q) = AX _

g (Q)
(di¤erential equations) (# of genus g curves)

Algebraic geometry Symplectic geometry
& .
Tropical geometry

interpreting lattice points as
Deformations Divisor classes

(H1 (X_,O�X _) = H2 (X_,Z))
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Degenerations

UnderstandMcomplex (X ) near large complex structure limit X0.

X0 = fx0x1x2x3x4 = 0g � P4

Xt +t � [5]

X0 = f x0x3 = x1x2 = 0g � P3

Xt +t � [2] + t � [2]

X0 = fx0x1 = x1x2 = x2x3 = x3x4 = x4x0 = 0g � P4

Xt by structure theorem
of Buchsbaum-Eisenbud
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Structure results for Gorenstein rings

Gorenstein codim � 2 =) complete intersection.

De�nition
X � Pn, codimX = 3 is called Pfa¢ an subscheme if X is the degeneracy
locus of a skew symmetric map ϕ : E (�t) �! E�, where E is rank
2k + 1 vector bundle on Pn, ϕ is generically of rank 2k, degenerates in
expected codim 3 to rank 2k � 2.

Theorem (Buchsbaum-Eisenbud)

Has loc. free resolution (ψ = Pfaff2k ϕ, s = c1 (E) + kt)

0! OPn (�t � 2s)! E (�t � s)
ϕ! E� (�s) ψ! OPn ! OX ! 0

Calabi-Yau () t + 2s = n+ 1

Theorem (Walter)

Gorenstein, codim 3, ω�X
�= OX (l), tech. cond. =) Pfa¢ an
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Structure results for Gorenstein rings

Example

0! R1(�5)! R5(�3)! R5(�2)! R/I

�
�x0x4 x3x4 �x2x3 x1x2 �x0x1

�
�

0BBBB@
0 0 x1 x3 0
0 0 0 x0 x2
�x1 0 0 0 x4
�x3 �x0 0 0 0
0 �x2 �x4 0 0

1CCCCA = 0

No general structure theorem for codim � 4.

Theorem (Kustin-Miller unprojection)

R/I Gorenstein codim c, I � J, φ : J/I ! R/I =)

R [T ] / hI , T � u � φ(u) j u 2 Ji is Gorenstein codim c + 1
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Setup

Y = TV(Σ) a Q-Gorenstein toric Fano variety, where Σ = Fan (∆�) over
a Fano polytope in NR = N 
R, N = Zn, M = HomZ(N,Z).

Flat family of Calabi-Yau varieties X! Spec C [t] with �bers Xt � Y .

Cox ring S = C [xr j r 2 Σ (1)] graded by

0! M
A! ZΣ(1) deg! An�1 (Y )! 0 P3 : 0! Z3 ! Z4 ! Z! 0

Strata (Y ) �= ∆,

Theorem (Cox)

Subschemes of Y � saturated (all ass. primes exist in Y ) ideals of S.

Depending on Y , replace S by Picard-Cox ring R =
L

α2Pic(Y ) Sα.
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Fundamental data: Strata of special �ber

Degeneration speci�ed by ideal

X : I � C [t]
 S X0 : I0 � S

Fundamental data:

MR Strata ∆
NR Tropical variety Gröbner cone

Strata (X0) �= Sd
\

Strata (Y ) �= ∆
f x0x3 = x1x2 = 0g � P3
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Fundamental corrspondences: Weight vectors

Space of homogeneous weight vectors on S :

NR =
Hom(RΣ(1),R)

Hom(An�1(Y )
R,R)
. P3 : NR =

R4

R(1,1,1,1)

Fix ideal J � S . Classi�cation of weight orderings with respect to J:

w � w 0 , inw (J) = inw 0 (J)

Classes are given by linear equalities and inequalities: Gröbner cones.
Gröbner cones form Gröbner fan.

For degeneration X given by I with special �ber given by I0: special �ber
Gröbner cone

CI0 (I ) = cl fw 2 R�NR j inw (I ) = I0g
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Amoebas and tropical varieties

Amoeba of V � (C�)n is its image under

logt : (C�)n ! Rn

(zi ) 7! (� logt jzi j)

K = C fftgg �eld of Puiseux series
val : K ! Q[ f∞g vanishing order

Non-Archimedian amoeba or tropical variety
trop (I ), I � K [x1, ..., xn ] is the closure of the
image of VK (I ) under

val : (K �)n ! Rn kf k = e�val(f )
(zi ) 7! (� log kzik) = (val (zi ))

limt!∞

trop (I ) is computable via Gröbner basis techniques.
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Computing tropical varieties

The tropical semiring is R[ f∞g with tropical addition and multiplication

a� b = min (a, b) a� b = a+ b

additive unit is ∞, multiplicative unit is 0, in general no additive inverse.
Tropical polynomial is a piecewise linear function.

f = ∑a ba (t) � x
a 2 K [x1, ..., xn ]

tropicalizes to
trop (f ) =

M
a
val (ba (t))� x�a

Theorem
val (VK (I )) for I � K [x1, ..., xn ] is the intersection of the corner loci of
trop (f ) for f 2 I .

val (VK (I )) = fw 2 Rn j inw (I ) contains no monomialg
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Fundamental data: Tropical variety

Tropical geometry associates to degenerations polyhedral objects in the
space of weights.
f = t � x30 + t � x31 + t � x32 + x0x1x2
Weight: trop (f ) = min f1+ 3w0, 1+ 3w1, 1+ 3w2,w0 + w1 + w2g

domains of linearity of trop (f )

Considering t as a variable denote for I � C [t]
 S
BF (I ) = val

�
VCffsgg (I )

�
� R�NR

as the Bergman fan of I .

trop (I ) = BF (I ) \ fwt = 1g
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Special �ber tropical variety

Intersecting CI0 (I ) with Bergman fan BF (I )

BFI0 (I ) � CI0 (I )
Intersecting with plane fwt = 1g identi�es s = t

TI0 (I ) � r � NR

the special �ber tropical variety in the special �ber polytope.
Example:

x0x3 + t �
�
x20 + x0x1 + ...

�
x1x2 + t �

�
x20 + x0x1 + ...

�
r 1 8 14 8 1
TI0 (I ) 1 4 4 0 0

Lemma
TI0 (I ) is a subcomplex of ∂r of same dim and codim as Xt .
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String limit

The points of TI0 (I ) are vanishing orders of power series solutions of I in
the parameter t.

lim : TI0 (I ) ! StrataX0
F 7!

n
limt!0 a (t) j a 2 val�1 relintF

o
induces inclusion reversing bijection.
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Fundamental data: Deformations

What are the lattice points of r� � MR?
Idea: Decompose the generators of I into characters m of (C�)Σ(1).
Example:

f1 = x0x3 + t �
�
x20 + x0x1 + ...

�
f2 = x1x2 + t �

�
x20 + x0x1 + ...

�  ! x0
x3
, x1x3 , ...

x 20
x1x2
, x0x2 , ...

Let m 2 image
�
0! M ! ZΣ(1)

�
.

Theorem
Strata(X0) combinatorial manifold ) dimT 1m 2 f0, 1g

First-order deformation ϕm : I0 ! S/I0

Smooth base ) r = convhull (deformations)
TI0 (I )

� = tropical faces of r�
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Example: Batyrev�s construction and degenerations

Batyrev:

Duality of re�exive polytopes  !

Involution of Gorenstein toric Fano var. polarized by �KY
Mirror symmetry of anti-canonical hypersurfaces

Associate to ∆ monomial degeneration X given by

I =

*
m0 + t � ∑

m2∆\M
am � ϕm(m0)

+
with m0 = ∏

r2Σ(1)
xr

∂∆� \N = Divisor classes on X induced from Y
∂∆� \N = Polynomial deformations of X_0 � Y (not id)
∆� = Weights on S selecting hm0i as lead ideal (wt = 1)
∂∆� = Strata of fm_0 = 0g
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Mirror degeneration

Idea: Natural deformation�divisor mirror map.
Y _ = TV(Σ_) toric Fano, Σ_ = Fan (r�), S = C [yr j r 2 Σ_ (1)].

I_0 =
�

∏
r2J
yr j Q-Cartier,

S
r2J
r̂ � � TI0 (I )

�
I_0 = hy1y2y3y4, y5y6y7y8i

I_ =

*
m0 + t � ∑

m2Strata(X0)�\N
am � ϕm(m0) j m0 2 I_0

+
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Integrally a¢ ne structures

Condition (T ): 8F 2 TI0 (I ) 9σ 2 Σ : F � σ
dim (σ) = dim (F ) + codimX

=) F 7! Σ (σ) = fτ̄ = τ + hσi j τ 2 Σg
integrally a¢ ne structure (! Gross-Siebert program)

(T ) is satis�ed for Gorenstein hypersurfaces
c.i. in Gorenstein Y = P (∆), Σ̂ = NF (∆)

Task: Find fan birational to Y such that (T ) is satis�ed.
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Fermat deformations

A subset R � r� \M is called set of Fermat deformations of X if

P = convhull (R) is a Fano polytope, and
the tropical deformation co-complex tropDefX (P) �= Strata (X0)

�

Example:

P2 � Xt =
x0x3 + t � [2] = 0
x1x2 + t � [2] = 0

$
x0
x3

x1
x3

x 21
x0x3

x1
x0

x3
x0

x2
x0

x 22
x0x3

x2
x3

x 20
x1x2

x0
x2

x1
x2

x3
x2

x 23
x1x2

x3
x1

x2
x1

x0
x1

P = convhull
�
y0 =

x20
x1x2

, y1 =
x21
x0x3

, y2 =
x22
x0x3

, y3 =
x23
x1x2

�

P3/Z4 � X_t =
y0y3 + t �

�
y21 + y

2
2

�
y1y2 + t �

�
y20 + y

2
3

�
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the tropical deformation co-complex tropDefX (P) �= Strata (X0)
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Applications: Complete intersections

Y Gorenstein toric Fano $ Σ = NF (∆), ∆ re�exive.

Complete intersection Σ (1) = R1
�
[ ...

�
[ Rc

given by nef partition �KY = E1 + ... + Ec
∆ = ∆E1 + + ∆Ec

Degeneration Xt � Y

I =

*
mj + t � ∑

m2∆Ej \M
am � ϕm (mj ) j j = 1, ..., c

+
where mj = ∏

r2Rj
xr

Then tropical mirror X_t � Y _ is the degeneration assoc. to dual nef part.

Batyrev-Borisov:
r = r1 + ...+rc
rj = convhull (Ij [ f0g)

 !
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Applications: Pfa¢ an non-complete intersection C(4,7)

Generic degree 14 Calabi-Yau 3-fold in P6 given by the 6� 6 Pfa¢ ans of

At : F_ (�1)! F with F =7O

At =

0BBBBBBBB@

0 0 x0 0 0 �x1 0
0 0 0 x3 0 0 �x4
�x0 0 0 0 x6 0 0
0 �x3 0 0 0 x2 0
0 0 �x6 0 0 0 x5
x1 0 0 �x2 0 0 0
0 x4 0 0 �x5 0 0

1CCCCCCCCA
+ t �

�
generic
skew

�

degenerating to Stanley-Reisner ring of ∂C (4, 7) .
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Applications: Pfa¢ an non-complete intersection C(4,7)

Ŷ _ = P6/Z7 Fermat deformations x 2i
xi�1xi+1

A_s =

0BBBBBBBB@

0 sy2 y0 0 0 �y1 �sy6
�sy2 0 sy5 y3 0 0 �y4
�y0 �sy5 0 sy1 y6 0 0
0 �y3 �sy1 0 sy4 y2 0
0 0 �y6 �sy4 0 sy0 y5
y1 0 0 �y2 �sy0 0 sy3
sy6 y4 0 0 �y5 �sy3 0

1CCCCCCCCA
Recover Rødland�s orbifolding mirror.
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Applications: Degree 13 Pfa¢ an non-complete intersection

Generic degree 13 Pfa¢ an C-Y 3-fold in P6

At : F_ (�1)! F with F = O (1)� 4O

At =

0BBBB@
0 0 x1x2 �x5x6 0
0 0 0 x3 �x7

�x1x2 0 0 0 x4
x5x6 �x3 0 0 0
0 x7 �x4 0 0

1CCCCA+ t �
�
generic
skew

�

Ŷ _ = P6/Z13 Fermat deformations
x 30

x1x2x6
x 21 x2
x0x3x4

x1x 22
x0x3x4

x 35
x3x4x6

x 23 x4
x1x2x5

x3x 24
x1x2x5

x 26
x0x5

A_s =

0BBBB@
0 sy24 y1y2 �y5y6 sy23
�sy24 0 s (y5 � y6) y3 �y7
�y1y2 �s (y5 � y6) 0 �sy7 y4
y5y6 �y3 sy7 0 s (y1 + y2)
�sy23 y7 �y4 �s (y1 + y2) 0

1CCCCA
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Ŷ _ = P6/Z13 Fermat deformations
x 30

x1x2x6
x 21 x2
x0x3x4

x1x 22
x0x3x4

x 35
x3x4x6

x 23 x4
x1x2x5

x3x 24
x1x2x5

x 26
x0x5

A_s =

0BBBB@
0 sy24 y1y2 �y5y6 sy23
�sy24 0 s (y5 � y6) y3 �y7
�y1y2 �s (y5 � y6) 0 �sy7 y4
y5y6 �y3 sy7 0 s (y1 + y2)
�sy23 y7 �y4 �s (y1 + y2) 0

1CCCCA

Janko Böhm (TU-KL) Tropical mirror symmetry 7 February 2012 25 / 28



Applications: Degree 13 Pfa¢ an non-complete intersection

Generic degree 13 Pfa¢ an C-Y 3-fold in P6

At : F_ (�1)! F with F = O (1)� 4O

At =

0BBBB@
0 0 x1x2 �x5x6 0
0 0 0 x3 �x7

�x1x2 0 0 0 x4
x5x6 �x3 0 0 0
0 x7 �x4 0 0

1CCCCA+ t �
�
generic
skew

�
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